OFFSET
0,4
COMMENTS
REFERENCES
G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.
FORMULA
G.f.=G(s,z)=(1+z)(1-z)^2/[1-2z-z^2+z^3-sz(1+z-z^2)].
The g.f. of column k is z^k*(1+z)(1-z)^2*(1+z-z^2)^k/(1-2z-z^2+z^3)^{k+1} (we have a Riordan array).
The g.f. H=H(t,s,z), where z marks size and t (s) marks odd (even) entries in the top row, is given by H = (1+z)(1-z)^2/[(1+z)(1-z)^2-(t+s)z-sz^2*(1-z)].
EXAMPLE
T(2,1)=4 because we have (0/2), (2/0), (1,0/0,1), and (0,1/1,0) (the 2-compositions are written as (top row / bottom row)).
Triangle starts:
1;
1,1;
2,4,1;
5,11,7,1;
11,31,29,10,1;
25,83,102,56,13,1;
MAPLE
G := (1+z)*(1-z)^2/(1-2*z-z^2+z^3-s*z*(1+z-z^2)): Gser := simplify(series(G, z = 0, 13)): for n from 0 to 10 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 10 do seq(coeff(P[n], s, k), k = 0 .. n) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Oct 14 2010
STATUS
approved