OFFSET
1,1
COMMENTS
a(n)=Sum(A181338(n,k),k=0..n).
REFERENCES
G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.
FORMULA
G.f. for 2-compositions with all entries <= k is h(k,z)=(1-z)^2/(1-4z+2z^2+2z^{k+1}-z^{2k+2}).
G.f. for 2-compositions with largest entry k is f(k,z)=h(k,z)-h(k-1,z).
G.f. = G(z)=Sum(k*f(k,z),k=1..infinity).
EXAMPLE
a(2)=9 because the 2-compositions of 2, written as (top row / bottom row), are (1 / 1), (0 / 2), (2 / 0), (1,0 / 0,1), (0,1 / 1,0), (1,1 / 0,0), (0,0 / 1,1) and we have 1 + 2 + 2 + 1 + 1 + 1 + 1 = 9.
MAPLE
h := proc (k) options operator, arrow: (1-z)^2/(1-4*z+2*z^2+2*z^(k+1)-z^(2*k+2)) end proc: f := proc (k) options operator, arrow: simplify(h(k)-h(k-1)) end proc: g := sum(k*f(k), k = 1 .. 50): gser := series(g, z = 0, 30): seq(coeff(gser, z, n), n = 1 .. 25);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 15 2010
STATUS
approved