login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181342
a(n) = (35*n^4 - 105*n^3 + 160*n^2 - 120*n + 36)/6.
3
1, 26, 186, 726, 2031, 4626, 9176, 16486, 27501, 43306, 65126, 94326, 132411, 181026, 241956, 317126, 408601, 518586, 649426, 803606, 983751, 1192626, 1433136, 1708326, 2021381, 2375626, 2774526, 3221686, 3720851, 4275906
OFFSET
1,2
COMMENTS
First bisection of A175898.
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 140 for n > 4; a(1)=1, a(2)=26, a(3)=186, a(4)=726.
G.f.: (1 + 21*x + 66*x^2 + 46*x^3 + 6*x^4)/(1-x)^5.
a(-n+1) = A181343(n). - Bruno Berselli, Aug 23 2011
MATHEMATICA
Table[(35n^4-105n^3+160n^2-120n+36)/6, {n, 30}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {1, 26, 186, 726, 2031}, 30] (* Harvey P. Dale, Feb 19 2017 *)
PROG
(Magma) [ (35*n^4-105*n^3+160*n^2-120*n+36)/6: n in [1..30] ];
(PARI) a(n)=(35*n^4-105*n^3+160*n^2-120*n+36)/6 \\ Charles R Greathouse IV, Jul 06 2017
CROSSREFS
Sequence in context: A252936 A218083 A042312 * A090960 A357178 A262107
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Oct 14 2010
STATUS
approved