login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175898
Expansion of (1+3*x+9*x^2+9*x^3+9*x^4+3*x^5+x^6) /( (1+x)^2 * (1-x)^5 ).
4
1, 6, 26, 76, 186, 386, 726, 1251, 2031, 3126, 4626, 6606, 9176, 12426, 16486, 21461, 27501, 34726, 43306, 53376, 65126, 78706, 94326, 112151, 132411, 155286, 181026, 209826, 241956, 277626, 317126, 360681, 408601, 461126, 518586, 581236, 649426, 723426
OFFSET
0,2
FORMULA
a(n) = 55*n^2/24 +185*n/96 +59/64 +35*n^4/96 +35*n^3/48 +(5*n/32+5/64)*(-1)^n.
a(2n) = (55*n^2+25*n+6+35*n^4+35*n^3)/6.
a(n) = +3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7).
MATHEMATICA
LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {1, 6, 26, 76, 186, 386, 726}, 40] (* Harvey P. Dale, Feb 27 2012 *)
PROG
(PARI) Vec((1+3*x+9*x^2+9*x^3+9*x^4+3*x^5+x^6)/((1+x)^2*(1-x)^5)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(PARI) a(n)=5*n*(7*n^3 + 14*n^2 + 44*n + 37 + 3*(-1)^n)\/96 + 1 \\ Charles R Greathouse IV, Jul 06 2017
CROSSREFS
Bisections: A181342, A181343.
Sequence in context: A166796 A001701 A241452 * A255870 A286188 A335648
KEYWORD
nonn,easy
AUTHOR
Jamil da SIlva, Oct 11 2010
EXTENSIONS
Edited by R. J. Mathar, Oct 12 2010
STATUS
approved