login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335648
Partial sums of A006010.
2
0, 1, 6, 26, 78, 195, 420, 820, 1476, 2501, 4026, 6222, 9282, 13447, 18984, 26216, 35496, 47241, 61902, 80002, 102102, 128843, 160908, 199068, 244140, 297037, 358722, 430262, 512778, 607503, 715728, 838864, 978384, 1135889, 1313046, 1511658, 1733598, 1980883, 2255604
OFFSET
0,3
FORMULA
a(n) = (1 + n)*(5 - 5*(-1)^n + 8*n + 12*n^2 + 8*n^3 + 2*n^4)/80.
O.g.f.: x*(1 + 2*x + 6*x^2 + 2*x^3 + x^4)/((1 - x)^6*(1 + x)^2).
E.g.f.: (cosh(x) - sinh(x))*(-5 + 5*x + (5 + 65*x + 180*x^2 + 130*x^3 + 30*x^4 + 2*x^5)*(cosh(2*x) + sinh(2*x)))/80.
a(n) = 4*a(n-1) - 4*a(n-2) - 4*a(n-3) + 10*a(n-4) - 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - a(n-8) for n > 7.
a(2*n-1) = n*A053755(n)/5 for n > 0.
a(2*n) = n*A005408(n)*A059722(n-1)/5.
a(2*n+1) - a(2*n-1) = A001844(n)^2 = A007204(n) for n > 0.
a(2*n) - a(2*n-2) = 2*A000290(n)*A058331(n) for n > 0.
MATHEMATICA
Table[(1+n)(5-5(-1)^n+8n+12n^2+8n^3+2n^4)/80, {n, 0, 38}]
PROG
(Magma) I:=[0, 1, 6, 26, 78, 195, 420, 820]; [n le 8 select I[n] else 4*Self(n-1)-4*Self(n-2)-4*Self(n-3)+10*Self(n-4)-4*Self(n-5)-4*Self(n-6)+4*Self(n-7)-Self(n-8): n in [1..39]];
(PARI) a(n) = (1 + n)*(5 - 5*(-1)^n + 8*n + 12*n^2 + 8*n^3 + 2*n^4)/80;
(Sage) (x*(1+2*x+6*x^2+2*x^3+x^4)/((1-x)^6*(1+x)^2)).series(x, 39).coefficients(x, False)
CROSSREFS
Cf. A006010 (1st differences), A186424 (3rd differences), A317614 (2nd differences).
Sequence in context: A175898 A255870 A286188 * A094162 A229572 A316160
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Jun 15 2020
STATUS
approved