login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186424 Odd terms in A186423. 10
1, 3, 11, 17, 33, 43, 67, 81, 113, 131, 171, 193, 241, 267, 323, 353, 417, 451, 523, 561, 641, 683, 771, 817, 913, 963, 1067, 1121, 1233, 1291, 1411, 1473, 1601, 1667, 1803, 1873, 2017, 2091, 2243, 2321, 2481, 2563, 2731, 2817, 2993, 3083, 3267, 3361, 3553, 3651 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sum of odd square and half of even square. - Vladimir Joseph Stephan Orlovsky, May 20 2011

Numbers m such that 6*m-2 is a square. - Bruno Berselli, Apr 29 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

G.f.: ( -1-2*x-6*x^2-2*x^3-x^4 ) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Feb 28 2011

a(n) = 3*(1+2*n+2*n^2)/4 + (-1)^n*(1+2*n)/4. - R. J. Mathar, Feb 28 2011

a(n+2) = a(n) + A091999(n+2).

Union of A080859 and A126587: a(2*n) = A080859(n) and a(2*n+1) = A126587(n+1).

From Peter Bala, Feb 13 2021: (Start)

Appears to be the sequence of exponents in the following series expansion:

Sum_{n >= 0} (-1)^n * x^n/Product_{k = 1..n} 1 - x^(2*k-1) = 1 - x - x^3 + x^11 + x^17 - x^33 - x^43 + + - - .... Cf. A053253.

More generally, for nonnegative integer N, we appear to have the identity

Product_{j = 1..N} 1/(1 + x^(2*j-1))*( P(N,x) + Sum_{n >= 1} (-1)^n * x^((2*N+1)*n-N)/Product_{k = 1..n} 1 - x^(2*k-1) ) = 1 - x - x^3 + x^11 + x^17 - x^33 - x^43 + + - - ..., where P(N,x) is a polynomial in x of degree N^2 - 1, with the first few values given empirically by

P(0,x) = 0, P(1,x) = 1, P(2,x) = 1 - x^2 + x^3, P(3,x) = 1 - x^2 + x^5 - x^7 + x^8 and P(4,x) =  1 - x^2 - x^4 + x^5 + x^8 - x^9 + x^12 - x^14 + x^15. Cf. A203568. (End)

MATHEMATICA

Table[If[OddQ[n], n^2+((n+1)^2)/2, (n^2)/2+(n+1)^2], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, May 20 2011 *)

PROG

(Haskell)

a186424 n = a186424_list !! n

a186424_list = filter odd a186423_list

CROSSREFS

Cf. A186421, A203568.

Sequence in context: A154501 A045432 A340541 * A018520 A154933 A197225

Adjacent sequences:  A186421 A186422 A186423 * A186425 A186426 A186427

KEYWORD

nonn,easy,changed

AUTHOR

Reinhard Zumkeller, Feb 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 2 09:23 EST 2021. Contains 341746 sequences. (Running on oeis4.)