login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186423
Partial sums of A186421.
6
0, 1, 3, 4, 8, 11, 17, 20, 28, 33, 43, 48, 60, 67, 81, 88, 104, 113, 131, 140, 160, 171, 193, 204, 228, 241, 267, 280, 308, 323, 353, 368, 400, 417, 451, 468, 504, 523, 561, 580, 620, 641, 683, 704, 748, 771, 817, 840, 888, 913, 963, 988, 1040, 1067, 1121, 1148, 1204, 1233, 1291, 1320
OFFSET
0,3
FORMULA
From R. J. Mathar, Feb 28 2011: (Start)
G.f.: x*(1 + 2*x + 2*x^3 + x^4)/( (1+x^2)*(1+x)^2*(1-x)^3 ).
a(n) = (6*n*(n+1) + 3 + (-1)^n*(2*n+1) - 4*A087960(n))/16. (End)
E.g.f.: ((2 + 5*x + 3*x^2)*cosh(x) + (1 + 7*x + 3*x^2)*sinh(x) + 2*sin(x) - 2*cos(x))/8. - G. C. Greubel, Oct 09 2019
MAPLE
A087960 := proc(n) op((n mod 4)+1, [1, -1, -1, 1]) ; end proc:
A186423 := proc(n) 3*n*(n+1)/8 +3/16 +(-1)^n*(2*n+1)/16 -A087960(n)/4 ; end proc: # R. J. Mathar, Feb 28 2011
MATHEMATICA
CoefficientList[Series[x(1+2x+2x^3+x^4)/((1-x)^3(1+x)^2(1+x^2)), {x, 0, 65}], x] (* Harvey P. Dale, Mar 13 2011 *)
Table[(6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^Binomial[n+1, 2])/16, {n, 0, 65}] (* G. C. Greubel, Oct 09 2019 *)
PROG
(Haskell)
a186423 n = a186423_list !! n
a186423_list = scanl1 (+) a186421_list
(PARI) vector(66, n, my(m=n-1); (6*m^2 +6*m +3 +(-1)^m*(2*m+1) -4*(-1)^binomial(m+1, 2))/16) \\ G. C. Greubel, Oct 09 2019
(Magma) [(6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^Binomial(n+1, 2))/16: n in [0..65]]; // G. C. Greubel, Oct 09 2019
(Sage) [(6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^binomial(n+1, 2))/16 for n in (0..65)] # G. C. Greubel, Oct 09 2019
(GAP) List([0..65], n-> (6*n^2 +6*n +3 +(-1)^n*(2*n+1) -4*(-1)^Binomial(n+1, 2))/16); # G. C. Greubel, Oct 09 2019
(Python)
def A186423(n): return (6*n*(n+1)+3+(-2*n-1 if n&1 else 2*n+1)+(4 if n+1&2 else -4))>>4 # Chai Wah Wu, Jan 31 2023
CROSSREFS
A062717 is the subsequence of even terms.
A186424 is the subsequence of odd terms.
Sequence in context: A217755 A373901 A133363 * A156056 A236453 A099108
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Feb 21 2011
EXTENSIONS
More terms added by G. C. Greubel, Oct 09 2019
STATUS
approved