login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186420
a(n) = binomial(2n,n)^4.
11
1, 16, 1296, 160000, 24010000, 4032758016, 728933458176, 138735983333376, 27435582641610000, 5588044012339360000, 1165183173971324375296, 247639903129149250277376, 53472066459540320483696896, 11701285507234585729600000000, 2589980371199606611713600000000
OFFSET
0,2
LINKS
FORMULA
a(n) = A000984(n)^4 = A002894(n)^2.
a(n) = binomial(2*n,n)^4 = ( [x^n](1 + x)^(2*n) )^4 = [x^n](F(x)^(16*n)), where F(x) = 1 + x + 25*x^2 + 1798*x^3 + 183442*x^4 + 22623769*x^5 + 3142959012*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008977 and A188662. - Peter Bala, Jul 14 2016
a(n) ~ 256^n/(Pi*n)^2. - Ilya Gutkovskiy, Jul 13 2016
EXAMPLE
G.f.: 4F3({1/2,1/2,1/2,1/2},{1,1,1},256x) where 4F3 is a hypergeometric series.
MATHEMATICA
Table[Binomial[2n, n]^4, {n, 0, 20}]
Table[Coefficient[Series[HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2}, {1, 1, 1}, 256 x], {x, 0, n}], x, n], {n, 0, 14}] (* Michael De Vlieger, Jul 13 2016 *)
PROG
(Maxima)
makelist(binomial(2*n, n)^4, n, 0, 40);
CROSSREFS
Cf. binomial(2n,n)^k: A000984 (k=1), A002894 (k=2), A002897 (k=3), this sequence (k=4).
Sequence in context: A007480 A369169 A307814 * A163395 A134375 A321583
KEYWORD
easy,nonn
AUTHOR
Emanuele Munarini, Feb 21 2011
STATUS
approved