login
A134375
a(n) = (n!)^4.
13
1, 1, 16, 1296, 331776, 207360000, 268738560000, 645241282560000, 2642908293365760000, 17340121312772751360000, 173401213127727513600000000, 2538767161403058526617600000000, 52643875858853821607942553600000000, 1503561738404723998944447273369600000000
OFFSET
0,3
COMMENTS
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = sigma_4(gcd(i,j)) for 1 <= i,j <= n, and n>0, where sigma_4 is A001159. - Enrique Pérez Herrero, Aug 13 2011
LINKS
FORMULA
a(n) = det(S(i+4,j), 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013
MAPLE
a:= n-> (n!)^4:
seq(a(n), n=0..20); # Alois P. Heinz, Aug 15 2013
MATHEMATICA
Table[((n)!)^(4), {n, 0, 10}]
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 22 2007
STATUS
approved