|
|
A009445
|
|
a(n) = (2*n+1)!.
|
|
36
|
|
|
1, 6, 120, 5040, 362880, 39916800, 6227020800, 1307674368000, 355687428096000, 121645100408832000, 51090942171709440000, 25852016738884976640000, 15511210043330985984000000, 10888869450418352160768000000, 8841761993739701954543616000000, 8222838654177922817725562880000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Denominators in the expansion of sin(x):
sin(x) = x - x^3/3! + x^5/5! - x^7/7! + x^9/9! - ...
Denominators in the expansion of sinc(x) = sin(x)/x:
sinc x = sin(x)/x = 1 - x^2/3! + x^4/5! - x^6/7! + x^8/9! - ... - Daniel Forgues, Oct 20 2011
The terms of this sequence are the denominators of sinh(x) = (e^x-e^(-x))/2 = x + x^3/3! + x^5/5! + x^7/7! + .... - Mohammad K. Azarian, Jan 19 2012
|
|
REFERENCES
|
H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, p. 88.
Isaac Newton, De analysi, 1669; reprinted in D. Whiteside, ed., The Mathematical Works of Isaac Newton, vol. 1, Johnson Reprint Co., 1964; see p. 20.
|
|
LINKS
|
|
|
FORMULA
|
Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / (1 - 4*x)^(3/2). - Ilya Gutkovskiy, Jul 11 2021
|
|
EXAMPLE
|
G.f. = 1 + 6*x + 120*x^2 + 5040*x^3 + 362880*x^4 + 39916800*x^5 + ...
|
|
MATHEMATICA
|
|
|
PROG
|
(Sage) [stirling_number1(2*i, 1) for i in range(1, 22)] # Zerinvary Lajos, Jun 27 2008
(Haskell)
(Sage)
T = taylor(sin(x^2), x, 0, 70)
[(-1)^n/T.coefficient(x, 4*n+2) for n in (0..15)] # Peter Luschny, Dec 14 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|