The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000442 a(n) = (n!)^3. 24
 1, 1, 8, 216, 13824, 1728000, 373248000, 128024064000, 65548320768000, 47784725839872000, 47784725839872000000, 63601470092869632000000, 109903340320478724096000000, 241457638684091756838912000000, 662559760549147780765974528000000, 2236139191853373760085164032000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Permanent of upper right n X n corner of multiplication table (A003991). - Marc LeBrun, Dec 11 2003 a(n) is the number of set partitions of {1, 2, ..., 4n - 1, 4n} into blocks of size 4 in which the entries of each block mod 4 are distinct. For example, a(2) = 8 counts 1234-5678, 1678-2345, 1278-3456, 1346-2578, 1238-4567, 1467-2358, 1247-3568, 1368-2457. - David Callan, Mar 30 2007 a(n) is also the determinant of the symmetric n X n matrix M defined by M(i, j) = sigma_3(gcd(i, j)) for 1 <= i,j <= n, and n > 0, where sigma_3 is A001158. - Enrique Pérez Herrero, Aug 13 2011 REFERENCES F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..100 G. S. Kazandzidis, On a Conjecture of Moessner and a General Problem, Bull. Soc. Math. Grèce, Nouvelle Série - vol. 2, fasc. 1-2, pp. 23-30, 1961. FORMULA a(n) = det(S(i+3, j), 1 <= i, j <= n), where S(n, k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013 From Karol A. Penson, Jul 28 2013: (Start) G.f. of hypergeometric type: sum(a(n)*z^n/(n!)^3, n = 0..infinity) = 1/(1-z); Integral representation as n-th moment of a positive function w(x) on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation: a(n) = int(x^n*w(x), x = 0..infinity), n >= 0, where w(x) = MeijerG([[], []], [[0, 0, 0]], []], x), w(0) = infinity, limit(w(x), x = infinity) = 0. w(x) is monotonically decreasing over (0, infinity). The Meijer G function above cannot be represented by any other known special function. This solution of the Stieltjes moment problem is not unique. Asymptotics: a(n) -> (1/16)*sqrt(2)*Pi^(3/2)*(32*n^2 + 8*n + 1)*(n)^(-1/2+3*n)*exp(-3*n), for n -> infinity. (End) D-finite with recurrence: a(n) -n^3*a(n-1)=0. - R. J. Mathar, Feb 16 2020 From Amiram Eldar, Nov 09 2020: (Start) a(n) = A000142(n)^3. Sum_{n>=0} 1/a(n) = A271574. (End) a(n) = [x^n] Product_{k=1..n} (1 + k^3*x). - Vaclav Kotesovec, Feb 19 2022 MAPLE seq((n!)^3, n=0..14), # Karol A. Penson, Jul 28 2013 MATHEMATICA Table[(n!)^3, {n, 0, 20}] (* Stefan Steinerberger, Apr 14 2006 *) PROG (PARI) a(n)=n!^3 \\ Charles R Greathouse IV, Jan 12 2012 (Magma) [Factorial(n)^3: n in [0..15]]; // Vincenzo Librandi, Jan 13 2012 CROSSREFS Cf. A000142, A003991, A271574. Row n=3 of A225816. Sequence in context: A002897 A024289 A009106 * A268471 A342598 A226524 Adjacent sequences: A000439 A000440 A000441 * A000443 A000444 A000445 KEYWORD nonn,easy AUTHOR R. Muller STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 15:44 EDT 2023. Contains 361668 sequences. (Running on oeis4.)