login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002897
a(n) = binomial(2n,n)^3.
(Formerly M4580 N1952)
36
1, 8, 216, 8000, 343000, 16003008, 788889024, 40424237568, 2131746903000, 114933031928000, 6306605327953216, 351047164190381568, 19774031697705428416, 1125058699232216000000, 64561313052442296000000
OFFSET
0,2
COMMENTS
Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*z + x + y + z)). - Gheorghe Coserea, Jul 14 2016
Conjecture: The g.f. is also the diagonal of the rational function 1/(1 - (x + y)*(1 - 4*z*t) - z - t) = 1/det(I - M*diag(x, y, z, t)), I the 4 x 4 unit matrix and M the 4 x 4 matrix [1, 1, 1, 1; 1, 1, 1, 1; 1, 1, 1, -1; 1 , 1, -1, 1]. If true, then a(n) = [(x*y*z)^n] (1 + x + y + z)^(2*n)*(1 + x + y - z)^n*(1 + x - y + z)^n. - Peter Bala, Apr 10 2022
REFERENCES
S. Ramanujan, Modular Equations and Approximations to pi, pp. 23-39 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 36, equation (25).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.
C. Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., 9 (1960), 149-361.
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
FORMULA
Expansion of (K(k)/(Pi/2))^2 in powers of (kk'/4)^2, where K(k) is the complete elliptic integral of the first kind evaluated at modulus k. - Michael Somos, Jan 31 2007
G.f.: F(1/2, 1/2, 1/2; 1, 1; 64x) where F() is a hypergeometric function. - Michael Somos, Jan 31 2007
G.f.: hypergeom([1/4,1/4],[1],64*x)^2. - Mark van Hoeij, Nov 17 2011
D-finite with recurrence n^3*a(n) - 8*(2*n - 1)^3*a(n-1) = 0. - R. J. Mathar, Mar 08 2013
From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(2*n,n)^3 = ( [x^n](1 + x)^(2*n) )^3 = [x^n](F(x)^(8*n)), where F(x) = 1 + x + 6*x^2 + 111*x^3 + 2806*x^4 + 84456*x^5 + 2832589*x^6 + 102290342*x^7 + ... appears to have integer coefficients. For similar results see A000897, A002894, A006480, A008977, A186420 and A188662. (End)
a(n) ~ 64^n/(Pi*n)^(3/2). - Ilya Gutkovskiy, Jul 13 2016
0 = (-x^2 + 64*x^3)*y''' + (-3*x + 288*x^2)*y'' + (-1 + 208*x)*y' + 8*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
a(n) = Sum_{k = 0..n} (2*n + k)!/(k!^3*(n - k)!^2). Cf. A001850(n) = Sum_{k = 0..n} (n + k)!/(k!^2*(n - k)!). - Peter Bala, Jul 27 2016
It appears that a(n) is the coefficient of (x*y*z)^(2*n) in the expansion of (1 + x*y + x*z - y*z)^(2*n) * (1 + x*y - x*z + y*z)^(2*n) * (1 - x*y + x*z + y*z)^(2*n). Cf. A000172. - Peter Bala, Sep 21 2021
From Peter Bala, Sep 24 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)*binomial(2*n+k,n).
a(n) = the coefficient of (x*y*z*t^2)^n in the expansion of 1/(1 - x - y)*(1 - z - t) - x*y*z*t) (a(n) = A(n,n,n,2*n) in the notation of Straub, Theorem 1.2). (End)
a(n) = (8/5) * Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)*binomial(2*n+k-1,n) for n >= 1. - Peter Bala, Jul 09 2024
a(n) = Sum_{k = 0..n} binomial(n, k)^2 * A108625(2*n, k). Cf. A183204. - Peter Bala, Oct 12 2024
From Peter Bala, Oct 16 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k)*binomial(2*n+k, k)*A108625(n, k) = 8 * Sum_{k = 0..n} (-1)^(n+k+1) * binomial(n-1, k)*binomial(2*n+k-1, k)*A108625(n, k) = (8/5) * Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k)*binomial(2*n+k-1, k)*A108625(n, k) for n >= 1. Cf. A176285. (End)
MATHEMATICA
a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 1/2, 1/2}, {1, 1}, 64x], {x, 0, n}];
Table[Binomial[2n, n]^3, {n, 0, 20}] (* Harvey P. Dale, Dec 06 2017 *)
PROG
(PARI) {a(n) = binomial(2*n, n)^3}; /* Michael Somos, Jan 31 2007 */
(Sage) [binomial(2*n, n)**3 for n in range(21)] # Zerinvary Lajos, Apr 21 2009
(Magma) [Binomial(2*n, n)^3: n in [0..20]]; // Vincenzo Librandi, Nov 18 2011
CROSSREFS
Related to diagonal of rational functions: A268545-A268555.
Sequence in context: A353933 A362073 A009072 * A024289 A009106 A000442
KEYWORD
nonn,easy
STATUS
approved