The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002897 a(n) = binomial(2n,n)^3. (Formerly M4580 N1952) 28
 1, 8, 216, 8000, 343000, 16003008, 788889024, 40424237568, 2131746903000, 114933031928000, 6306605327953216, 351047164190381568, 19774031697705428416, 1125058699232216000000, 64561313052442296000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*z + x + y + z)). - Gheorghe Coserea, Jul 14 2016 Conjecture: The g.f. is also the diagonal of the rational function 1/(1 - (x + y)*(1 - 4*z*t) - z - t) = 1/det(I - M*diag(x, y, z, t)), I the 4 x 4 unit matrix and M the 4 x 4 matrix [1, 1, 1, 1; 1, 1, 1, 1; 1, 1, 1, -1; 1 , 1, -1, 1]. If true, then a(n) = [(x*y*z)^n] (1 + x + y + z)^(2*n)*(1 + x + y - z)^n*(1 + x - y + z)^n. - Peter Bala, Apr 10 2022 REFERENCES S. Ramanujan, Modular Equations and Approximations to pi, pp. 23-39 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 36, equation (25). N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..100 David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008. C. Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., 9 (1960), 149-361. Yen Lee Loh, A general method for calculating lattice Green functions on the branch cut, arXiv:1706.03083 [math-ph], 2017. FORMULA Expansion of (K(k)/(Pi/2))^2 in powers of (kk'/4)^2, where K(k) is the complete elliptic integral of the first kind evaluated at modulus k. - Michael Somos, Jan 31 2007 G.f.: F(1/2, 1/2, 1/2; 1, 1; 64x) where F() is a hypergeometric function. - Michael Somos, Jan 31 2007 G.f.: hypergeom([1/4,1/4],,64*x)^2. - Mark van Hoeij, Nov 17 2011 D-finite with recurrence n^3*a(n) - 8*(2*n - 1)^3*a(n-1) = 0. - R. J. Mathar, Mar 08 2013 From Peter Bala, Jul 12 2016: (Start) a(n) = binomial(2*n,n)^3 = ( [x^n](1 + x)^(2*n) )^3 = [x^n](F(x)^(8*n)), where F(x) = 1 + x + 6*x^2 + 111*x^3 + 2806*x^4 + 84456*x^5 + 2832589*x^6 + 102290342*x^7 + ... appears to have integer coefficients. For similar results see A000897, A002894, A006480, A008977, A186420 and A188662. (End) a(n) ~ 64^n/(Pi*n)^(3/2). - Ilya Gutkovskiy, Jul 13 2016 0 = (-x^2 + 64*x^3)*y''' + (-3*x + 288*x^2)*y'' + (-1 + 208*x)*y' + 8*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016 a(n) = Sum_{k = 0..n} (2*n + k)!/(k!^3*(n - k)!^2). Cf. A001850(n) = Sum_{k = 0..n} (n + k)!/(k!^2*(n - k)!). - Peter Bala, Jul 27 2016 It appears that a(n) is the coefficient of (x*y*z)^(2*n) in the expansion of (1 + x*y + x*z - y*z)^(2*n) * (1 + x*y - x*z + y*z)^(2*n) * (1 - x*y + x*z + y*z)^(2*n).  Cf. A000172. - Peter Bala, Sep 21 2021 MATHEMATICA a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 1/2, 1/2}, {1, 1}, 64x], {x, 0, n}]; Table[Binomial[2n, n]^3, {n, 0, 20}] (* Harvey P. Dale, Dec 06 2017 *) PROG (PARI) {a(n) = binomial(2*n, n)^3}; /* Michael Somos, Jan 31 2007 */ (Sage) [binomial(2*n, n)**3 for n in range(21)] # Zerinvary Lajos, Apr 21 2009 (MAGMA) [Binomial(2*n, n)^3: n in [0..20]]; // Vincenzo Librandi, Nov 18 2011 CROSSREFS Cf. A000897, A002894, A006480, A008977, A186420, A188662. Related to diagonal of rational functions: A268545-A268555. Sequence in context: A123057 A353933 A009072 * A024289 A009106 A000442 Adjacent sequences:  A002894 A002895 A002896 * A002898 A002899 A002900 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 3 16:27 EDT 2022. Contains 355055 sequences. (Running on oeis4.)