OFFSET
0,2
COMMENTS
a(n) is the (2n)th moment of the distance from the origin of a 4-step random walk in the plane. - Peter M.W. Gill (peter.gill(AT)nott.ac.uk), Mar 03 2004
Row sums of the cube of A008459. - Peter Bala, Mar 05 2013
Conjecture: Let D(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0..n. Then the number D(n)/12^n is always a positive odd integer. - Zhi-Wei Sun, Aug 14 2013
It appears that the expansions exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 4*x + 22*x^2 + 152*x^3 + 1241*x^4 + ... and exp( Sum_{n >= 1} 1/4*a(n)*x^n/n ) = 1 + x + 4*x^2 + 25*x^3 + 199*x^4 + ... have integer coefficients. See A267219. - Peter Bala, Jan 12 2016
This is one of the Apéry-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Named after the British-Israeli theoretical physicist Cyril Domb (1920-2012). - Amiram Eldar, Mar 20 2021
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..832 (terms 0..100 from T. D. Noe)
B. Adamczewski, Jason P. Bell and E. Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments and applications, Journal of Physics A: Mathematical and Theoretical, Vol. 41, No. 20 (2008), 205203; arXiv preprint, arXiv:0801.0891 [hep-th], 2008.
Jonathan M. Borwein, A short walk can be beautiful, Journal of Humanistic Mathematics, Vol. 6, No. 1 (2016), pp. 86-109; preprint, 2015.
Jonathan M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016.
Jonathan M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]
Jonathan M. Borwein and Armin Straub, Mahler measures, short walks and log-sine integrals, Theoretical Computer Science, Vol. 479 (2013), pp. 4-21.
Jonathan M. Borwein, Armin Straub and Christophe Vignat, Densities of short uniform random walks, Part II: Higher dimensions, Preprint, 2015.
Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, 2010.
Alin Bostan, Andrew Elvey Price, Anthony John Guttmann and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
H. Huat Chan, Song Heng Chan and Zhiguo Liu, Domb's numbers and Ramanujan-Sato type series for 1/pi, Adv. Math., Vol. 186, No. 2 (2004), pp. 396-410.
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023. See Table 2 p. 7.
Shaun Cooper, James G. Wan and Wadim Zudilin, Holonomic Alchemy and Series for 1/pi, in: G. Andrews and F. Garvan (eds.) Analytic Number Theory, Modular Forms and q-Hypergeometric Series, ALLADI60 2016, Springer Proceedings in Mathematics & Statistics, Vol 221. Springer, Cham, 2016; arXiv preprint, arXiv:1512.04608 [math.NT], 2015.
Eric Delaygue, Arithmetic properties of Apéry-like numbers, Compositio Mathematica, Vol. 154, No. 2 (2018), pp. 249-274; arXiv preprint, arXiv:1310.4131 [math.NT], 2013-2015.
Cyril Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., Vol. 9 (1960), pp. 149-361.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See alpha p. 3.
John A. Hendrickson, Jr., On the enumeration of rectangular (0,1)-matrices, Journal of Statistical Computation and Simulation, Vol. 51 (1995), pp. 291-313.
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
Ji-Cai Liu, Supercongruences for sums involving Domb numbers, arXiv:2008.02647 [math.NT], 2020.
Rui-Li Liu and Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
Yen Lee Loh, A general method for calculating lattice green functions on the branch cut, Journal of Physics A: Mathematical and Theoretical, Vol. 50, No. 40 (2017), 405203; arXiv preprint, arXiv:1706.03083 [math-ph], 2017.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
Guo-Shuai Mao and Yan Liu, Proof of some conjectural congruences involving Domb numbers, arXiv:2112.00511 [math.NT], 2021.
Guo-Shuai Mao and Michael J. Schlosser, Supercongruences involving Domb numbers and binary quadratic forms, arXiv:2112.12732 [math.NT], 2021.
Robert Osburn and Brundaban Sahu, A supercongruence for generalized Domb numbers, Functiones et Approximatio Commentarii Mathematici, Vol. 48, No. 1 (2013), pp. 29-36; preprint.
L. B. Richmond and Jeffrey Shallit, Counting Abelian Squares, The Electronic Journal of Combinatorics, Vol. 16, No. 1 (2009), Article R72; arXiv preprint, arXiv:0807.5028 [math.CO], 2008.
Armin Straub, Arithmetic aspects of random walks and methods in definite integration, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012.
Zhi-Hong Sun, Super congruences concerning binomial coefficients and Apéry-like numbers, arXiv:2002.12072 [math.NT], 2020.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020.
Zhi-Wei Sun, Conjectures involving arithmetical sequences, in: S. Kanemitsu, H. Li and J. Liu (eds.), Number Theory: Arithmetic in Shangri-La, Proc. the 6th China-Japan Sem. Number Theory (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258; alternative link.
H. A. Verrill, Sums of squares of binomial coefficients, with applications to Picard-Fuchs equations, arXiv:math/0407327 [math.CO], 2004.
Chen Wang, Supercongruences and hypergeometric transformations, arXiv:2003.09888 [math.NT], 2020.
Yi Wang and BaoXuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, Science China Mathematics, Vol. 57, No. 11 (2014), pp. 2429-2435; arXiv preprint, arXiv:1303.5595 [math.CO], 2013.
Bao-Xuan Zhu, Higher order log-monotonicity of combinatorial sequences, arXiv preprint, arXiv:1309.6025 [math.CO], 2013.
FORMULA
a(n) = Sum_{k=0..n} binomial(n, k)^2 * binomial(2n-2k, n-k) * binomial(2k, k).
D-finite with recurrence: n^3*a(n) = 2*(2*n-1)*(5*n^2-5*n+2)*a(n-1) - 64*(n-1)^3*a(n-2). - Vladeta Jovovic, Jul 16 2004
Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0, 2*sqrt(x))^4. - Vladeta Jovovic, Aug 01 2006
G.f.: hypergeom([1/6, 1/3],[1],108*x^2/(1-4*x)^3)^2/(1-4*x). - Mark van Hoeij, Oct 29 2011
From Zhi-Wei Sun, Mar 20 2013: (Start)
Via the Zeilberger algorithm, Zhi-Wei Sun proved that:
(1) 4^n*a(n) = Sum_{k = 0..n} (binomial(2k,k)*binomial(2(n-k),n-k))^3/ binomial(n,k)^2,
(2) a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*binomial(2k,n)*binomial(2k,k)* binomial(2(n-k),n-k). (End)
a(n) ~ 2^(4*n+1)/((Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 20 2013
G.f. y=A(x) satisfies: 0 = x^2*(4*x - 1)*(16*x - 1)*y''' + 3*x*(128*x^2 - 30*x + 1)*y'' + (448*x^2 - 68*x + 1)*y' + 4*(16*x - 1)*y. - Gheorghe Coserea, Jun 26 2018
a(n) = Sum_{p+q+r+s=n} (n!/(p!*q!*r!*s!))^2 with p,q,r,s >= 0. See Verrill, p. 5. - Peter Bala, Jan 06 2020
From Peter Bala, Jul 25 2024: (Start)
a(n) = 2*Sum_{k = 1..n} (k/n)*binomial(n, k)^2*binomial(2*n-2*k, n-k)* binomial(2*k, k) for n >= 1.
a(n-1) = (1/2)*Sum_{k = 1..n} (k/n)^3*binomial(n, k)^2*binomial(2*n-2*k, n-k)* binomial(2*k, k) for n >= 1. Cf. A081085. (End)
MAPLE
A002895 := n -> add(binomial(n, k)^2*binomial(2*n-2*k, n-k)*binomial(2*k, k), k=0..n): seq(A002895(n), n=0..25); # Wesley Ivan Hurt, Dec 20 2015
A002895 := n -> binomial(2*n, n)*hypergeom([1/2, -n, -n, -n], [1, 1, 1/2 - n], 1):
seq(simplify(A002895(n)), n=0..19); # Peter Luschny, May 23 2017
MATHEMATICA
Table[Sum[Binomial[n, k]^2 Binomial[2n-2k, n-k]Binomial[2k, k], {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Aug 15 2011 *)
a[n_] = Binomial[2*n, n]*HypergeometricPFQ[{1/2, -n, -n, -n}, {1, 1, 1/2-n}, 1]; (* or *) a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^4, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Dec 30 2013, after Vladeta Jovovic *)
max = 19; Total /@ MatrixPower[Table[Binomial[n, k]^2, {n, 0, max}, {k, 0, max}], 3] (* Jean-François Alcover, Mar 24 2015, after Peter Bala *)
PROG
(PARI) C=binomial;
a(n) = sum(k=0, n, C(n, k)^2 * C(2*n-2*k, n-k) * C(2*k, k) );
/* Joerg Arndt, Apr 19 2013 */
CROSSREFS
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
KEYWORD
nonn,easy,nice,walk
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Mar 11 2003
STATUS
approved