login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005260 a(n) = Sum_{k = 0..n} binomial(n,k)^4.
(Formerly M2110)
63
1, 2, 18, 164, 1810, 21252, 263844, 3395016, 44916498, 607041380, 8345319268, 116335834056, 1640651321764, 23365271704712, 335556407724360, 4854133484555664, 70666388112940818, 1034529673001901732 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
This sequence is s_10 in Cooper's paper. - Jason Kimberley, Nov 25 2012
Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*x*z + w*y*z + x*y*z + w*x + y*z)). - Gheorghe Coserea, Jul 13 2016
This is one of the Apéry-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Every prime eventually divides some term of this sequence. - Amita Malik, Aug 20 2017
Two walkers, A and B, stand on the South-West and North-East corners of an n X n grid, respectively. A walks by either North or East steps while B walks by either South or West steps. Sequence values a(n) < binomial(2*n,n)^2 count the simultaneous walks where A and B meet after exactly n steps and change places after 2*n steps. - Bradley Klee, Apr 01 2019
a(n) is the constant term in the expansion of ((1 + x) * (1 + y) * (1 + z) + (1 + 1/x) * (1 + 1/y) * (1 + 1/z))^n. - Seiichi Manyama, Oct 27 2019
REFERENCES
H. W. Gould, Combinatorial Identities, Morgantown, 1972, (X.14), p. 79.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..834 (terms 0..250 from Jason Kimberley)
B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
Hacene Belbachir and Yassine Otmani, A Strehl Version of Fourth Franel Sequence, arXiv:2012.02563 [math.CO], 2020.
F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), no. 2, 201-210.
W. Y. C. Chen, Q.-H. Hou, and Y-P. Mu, A telescoping method for double summations, J. Comp. Appl. Math. 196 (2006) 553-566, eq (5.5).
M. Coster, Email, Nov 1990
E. Delaygue, Arithmetic properties of Apéry-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See s10 p. 3.
Darij Grinberg, Introduction to Modern Algebra (UMN Spring 2019 Math 4281 Notes), University of Minnesota (2019).
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
Robert Osburn, Armin Straub, and Wadim Zudilin, A modular supercongruence for 6F5: an Apéry-like story, arXiv:1701.04098 [math.NT], 2017.
M. A. Perlstadt, Some Recurrences for Sums of Powers of Binomial Coefficients, Journal of Number Theory 27 (1987), pp. 304-309.
V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
Zhi-Wei Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquarterly 36(2019), no.1, 1-99. (Cf. Conjectures 49-51.)
Eric Weisstein's World of Mathematics, Binomial Sums
Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes, preprint of Combinatorics, Probability and Computing, 24(1), 2015, 354-372.
FORMULA
a(n) ~ 2^(1/2)*Pi^(-3/2)*n^(-3/2)*2^(4*n). - Joe Keane (jgk(AT)jgk.org), Jun 21 2002
D-finite with recurrence: n^3*a(n) = 2*(2*n - 1)*(3*n^2 - 3*n + 1)*a(n-1) + (4*n - 3)*(4*n - 4)*(4*n - 5)*a(n-2).
G.f.: 5*hypergeom([1/8, 3/8],[1], (4/5)*((1-16*x)^(1/2)+(1+4*x)^(1/2))*(-(1-16*x)^(1/2)+(1+4*x)^(1/2))^5/(2*(1-16*x)^(1/2)+3*(1+4*x)^(1/2))^4)^2/(2*(1-16*x)^(1/2)+3*(1+4*x)^(1/2)). - Mark van Hoeij, Oct 29 2011
1/Pi = sqrt(15)/18 * Sum_{n >= 0} a(n)*(4*n + 1)/36^n (Cooper, equation (5)) = sqrt(15)/18 * Sum_{n >= 0} a(n)*A016813(n)/A009980(n). - Jason Kimberley, Nov 26 2012
0 = (-x^2 + 12*x^3 + 64*x^4)*y''' + (-3*x + 54*x^2 + 384*x^3)*y'' + (-1 + 40*x + 444*x^2)*y' + (2 + 60*x)*y, where y is g.f. - Gheorghe Coserea, Jul 13 2016
For r a nonnegative integer, Sum_{k = r..n} C(k,r)^4*C(n,k)^4 = C(n,r)^4*a(n-r), where we take a(n) = 0 for n < 0. - Peter Bala, Jul 27 2016
a(n) = hypergeom([-n, -n, -n, -n], [1, 1, 1], 1). - Peter Luschny, Jul 27 2016
Sum_{n>=0} a(n) * x^n / (n!)^4 = (Sum_{n>=0} x^n / (n!)^4)^2. - Ilya Gutkovskiy, Jul 17 2020
a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k)*C(2k,k)*C(2n-2k,n-k)*(-1)^(n-k). This can be proved via the Zeilberger algorithm. - Zhi-Wei Sun, Aug 23 2020
a(n) = (-1)^n*binomial(2*n, n)*hypergeom([1/2, -n, -n, n + 1], [1, 1, 1/2 - n], 1). - Peter Luschny, Aug 24 2020
a(n) = Sum_{k=0..n} binomial(n,k)^2*binomial(2*k,n)*binomial(2*n-k,n) [Theorem 1 in Belbachir and Otmani]. - Michel Marcus, Dec 06 2020
a(n) = [x^n] (1 - x)^(2*n) P(n,(1 + x)/(1 - x))^2, where P(n,x) denotes the n-th Legendre polynomial. See Gould, p. 66. This formula is equivalent to the binomial sum identity of Zhi-Wei Sun given above. - Peter Bala, Mar 24 2022
EXAMPLE
G.f. = 1 + 2*x + 18*x^2 + 164*x^3 + 1810*x^4 + 21252*x^5 + 263844*x^6 + ...
MAPLE
A005260 := proc(n)
add( (binomial(n, k))^4, k=0..n) ;
end proc:
seq(A005260(n), n=0..10) ; # R. J. Mathar, Nov 19 2012
MATHEMATICA
Table[Sum[Binomial[n, k]^4, {k, 0, n}], {n, 0, 20}] (* Wesley Ivan Hurt, Mar 09 2014 *)
PROG
(PARI) {a(n) = sum(k=0, n, binomial(n, k)^4)};
(Python)
def A005260(n):
m, g = 1, 0
for k in range(n+1):
g += m
m = m*(n-k)**4//(k+1)**4
return g # Chai Wah Wu, Oct 04 2022
CROSSREFS
Column k=4 of A309010.
Related to diagonal of rational functions: A268545-A268555.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.
Sequence in context: A037518 A037721 A245998 * A183250 A037728 A037623
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Michael Somos, Aug 09 2002
Minor edits by Vaclav Kotesovec, Aug 28 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 06:56 EDT 2024. Contains 370953 sequences. (Running on oeis4.)