login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093388
(n+1)^2*a(n+1) = (17n^2+17n+6)*a(n) - 72*n^2*a(n-1).
47
1, 6, 42, 312, 2394, 18756, 149136, 1199232, 9729882, 79527084, 654089292, 5408896752, 44941609584, 375002110944, 3141107339328, 26402533581312, 222635989516122, 1882882811380284, 15967419789558804, 135752058036988848, 1156869080242393644
OFFSET
0,2
COMMENTS
This is the Taylor expansion of a special point on a curve described by Beauville.
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
REFERENCES
Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1050 (terms 0..200 from Vincenzo Librandi)
Arnaud Beauville, Les familles stables de courbes sur P_1 admettant quatre fibres singulières, Comptes Rendus, Académie Sciences Paris, no. 294, May 24 1982.
Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Some Arithmetic Properties of Short Random Walk Integrals, May 2011.
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023.
Matthijs Coster, Sequences
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See F p. 2.
S. Herfurtner, Elliptic surfaces with four singular fibres, Mathematische Annalen, 1991. Preprint.
Bradley Klee, Checking Weierstrass data, 2023.
Robert S. Maier, On Rationally Parametrized Modular Equations, arXiv:math/0611041 [math.NT], 2006.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5
Armin Straub, Arithmetic aspects of random walks and methods in definite integration, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012. - From N. J. A. Sloane, Dec 16 2012
Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020.
D. Zagier, Integral solutions of Apery-like recurrence equations. See line F in sporadic solutions table of page 5.
FORMULA
a(n) = (-1)^n * Sum_{k=0..n} binomial(n, k) * (-8)^k * Sum_{j=0..n-k} binomial(n-k, j)^3. - Helena Verrill (verrill(AT)math.lsu.edu), Aug 09 2004
G.f.: hypergeom([1/3, 2/3],[1],x^2*(8*x-1)/(2*x-1/3)^3)/(1-6*x). - Mark van Hoeij, Oct 25 2011
a(n) ~ 3^(2*n+3/2)/(Pi*n). - Vaclav Kotesovec, Oct 14 2012
G.f. A(x) satisfies: 0 = x*(x+8)*(x+9)*y'' + (3*x^2 + 34*x + 72)*y' + (x+6)*y, where y(x) = A(-x/72). - Gheorghe Coserea, Aug 26 2016
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=6*(-1 + 12*x)*T(x) + (1 - 34*x + 216*x^2)*T'(x) + x*(-1 + 8*x)*(-1 + 9*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 12*(-1 + 6*x)*(-1 + 18*x - 84*x^2 + 24*x^3);
g3 = -8*(1 - 12*x + 24*x^2)*(-1 + 24*x - 192*x^2 + 504*x^3 + 72*x^4);
which determine an elliptic surface with four singular fibers. (End)
EXAMPLE
A(x) = 1 + 6*x + 42*x^2 + 312*x^3 + 2394*x^4 + 18756*x^5 + ... is the g.f.
MAPLE
f:=proc(n) option remember; local m; if n=0 then RETURN(1); fi; if n=1 then RETURN(6); fi; m:=n-1; ((17*m^2+17*m+6)*f(n-1)-72*m^2*f(n-2))/n^2; end;
MATHEMATICA
Table[(-1)^n*Sum[Binomial[n, k]*(-8)^k*Sum[Binomial[n-k, j]^3, {j, 0, n-k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)
PROG
(PARI) a(n)=(-1)^n*sum(k=0, n, binomial(n, k)*(-8)^k*sum(j=0, n-k, binomial(n-k, j)^3));
(PARI)
seq(N) = {
my(a = vector(N)); a[1] = 6; a[2] = 42;
for (n=3, N, a[n] = ((17*n^2 - 17*n + 6)*a[n-1] - 72*(n-1)^2*a[n-2])/n^2);
concat(1, a);
};
seq(20) \\ Gheorghe Coserea, Aug 26 2016
CROSSREFS
This is the seventh sequence in the family beginning A002894, A006077, A081085, A005258, A000172, A002893.
Cf. A091401.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Sequence in context: A299916 A091164 A004982 * A162968 A247638 A034171
KEYWORD
nonn
AUTHOR
Matthijs Coster, Apr 29 2004
STATUS
approved