login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093387 a(n) = 2^(n-1) - binomial(n, floor(n/2)). 8
0, 0, 1, 2, 6, 12, 29, 58, 130, 260, 562, 1124, 2380, 4760, 9949, 19898, 41226, 82452, 169766, 339532, 695860, 1391720, 2842226, 5684452, 11576916, 23153832, 47050564, 94101128, 190876696, 381753392, 773201629, 1546403258, 3128164186, 6256328372, 12642301534 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Suppose n >= 3. Let e_1,...,e_n be n unit-vectors which generate Euclidean space R_n and let l_n = {x= sum a_i e_i | a_1 >= a_2 >= ... >= a_n >= 0 }. Consider the hypercube H_n with vertices h_1,...,h_{2^n} = {epsilon_1 e_1+...+ epsilon_n e_n}.

For each element x in l_n we build 2^n "statements" by taking the inner product of x with h_i. We call a statement true if (x,h_i) > 0 and false if (x,h_i) < 0. Two vectors x and y are indistinguishable if all statements produced by x and y are equal.

For each set of indistinguishable vectors we chose one vector, which is called the representative. The sequence gives the number of representatives.

Hankel transform is A127365. - Paul Barry, Jan 11 2007

Number of up-steps starting at level 0 in all dispersed Dyck paths of length n-1 (that is, in Motzkin paths of length n-1 with no (1,0)-steps at positive heights). - Emeric Deutsch, May 30 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Matthijs Coster, Sequences

Matthijs Coster, Statements and Representatives, 2004.

Vladimir Shevelev, A Mathar's conjecture, Seqfan, Nov 17 2017.

FORMULA

a(n) = A000079(n-1) - A001405(n).

a(n+1) = Sum_{k=2..n} binomial(n, floor((n-k)/2)). - Paul Barry, Jan 11 2007

a(2n) = 2*a(2n-1). - Emeric Deutsch, May 30 2011

a(n+1) = Sum_{k>=0} k*A191310(n,k). - Emeric Deutsch, May 30 2011

G.f.: (1-sqrt(1-4*z^2))^2/(4*z*(1-2*z)). - Emeric Deutsch, May 30 2011

Conjecture: (n+1)*a(n) + 2*(-n-1)*a(n-1) + 4*(-n+2)*a(n-2) + 8*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 30 2012

a(2*n+1) = 2*a(2*n) + A000108(n). Together with the first formula by Emeric Deutsch, we have a simple system of recursions. Using them, we can prove Mathar's conjecture. For example, let n be odd, n=2*m+1. By the left hand side of Mathar's conjecture, we have (2*m+2)*a(2*m+1) - 2*(2*m+2)*a(2*m) - 4*(2*m-1)*a(2*m-1) + 8(2*m-1)*a(2*m-2) = (2*m+2)*(2*a(2*m) + A000108(m) - 2*a(2*m)) - 4*(2*m-1)*(2*a(2*m-2) + A000108(m-1) - 2*a(2*m-2)) = (2*m+2)*A000108(m) - 4*(2*m-1)*A000108(m-1) = 0, since A000108(m) = binomial(2*m, m)/(m+1). - Vladimir Shevelev, Nov 17 2017

EXAMPLE

a(5)=6 because, denoting U=(1,1), D=(1,-1), H=(1,0), in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD we have 0+1+1+1+2+1=6 U steps starting at level 0. - Emeric Deutsch, May 30 2011

MAPLE

A093387:=n->2^(n-1)-binomial(n, floor(n/2)); seq(A093387(n), n=1..50); # Wesley Ivan Hurt, Dec 01 2013

MATHEMATICA

Table[2^(n - 1) - Binomial[n, Floor[n/2]], {n, 50}] (* Wesley Ivan Hurt, Dec 01 2013 *)

PROG

(PARI) a(n) = 2^(n-1) - binomial(n, n\2); \\ Michel Marcus, Aug 13 2013

CROSSREFS

Cf. A000079, A001405, A000108, A127365, A191310.

Sequence in context: A183467 A057582 A094779 * A324408 A229487 A195166

Adjacent sequences:  A093384 A093385 A093386 * A093388 A093389 A093390

KEYWORD

nonn

AUTHOR

Matthijs Coster, Apr 29 2004

EXTENSIONS

Offset corrected by R. J. Mathar, Jun 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 05:48 EST 2022. Contains 358353 sequences. (Running on oeis4.)