login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191310
Triangle read by rows: T(n,k) is the number of dispersed Dyck paths (i.e., Motzkin paths with no (1,0) steps at positive heights) of length n having k up-steps starting at level 0.
1
1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 6, 3, 1, 10, 8, 1, 1, 14, 16, 4, 1, 23, 32, 13, 1, 1, 32, 56, 32, 5, 1, 55, 102, 74, 19, 1, 1, 78, 170, 152, 55, 6, 1, 143, 302, 307, 144, 26, 1, 1, 208, 498, 580, 336, 86, 7, 1, 405, 890, 1102, 748, 251, 34, 1, 1, 602, 1478, 2004, 1564, 652, 126, 8, 1, 1228, 2691, 3714, 3200, 1587, 405, 43, 1
OFFSET
0,6
COMMENTS
Row n has 1 + floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
Sum_{k>=0} k*T(n,k) = A093387(n+1).
FORMULA
G.f.: G(t,z) = 2/(2-2*z-t*(1-sqrt(1-4*z^2))).
EXAMPLE
T(5,2)=3 because we have HUDUD, UDHUD, and UDUDH, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
1;
1;
1, 1;
1, 2;
1, 4, 1;
1, 6, 3;
1, 10, 8, 1;
1, 14, 16, 4;
1, 23, 32, 13, 1;
MAPLE
G := 2/(2-2*z-t*(1-sqrt(1-4*z^2))): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
CROSSREFS
Sequence in context: A130313 A247073 A124428 * A124845 A191392 A127625
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 30 2011
STATUS
approved