OFFSET
0,3
COMMENTS
Also number of dispersed Dyck paths of length n having k valleys (i.e., DU's). Example: T(7,2)=2 because we have HUDUDUD and UDUDUDH, where U=(1,1), D=(1,-1), H=(1,0).
Also number of dispersed Dyck paths of length n having k doublerises (i.e., UU's). Example: T(7,2)=2 because we have HUUUDDD and UUUDDDH, where U=(1,1), D=(1,-1), H=(1,0).
Row n>=2 has floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
T(n,0) = A000045(n+1) (the Fibonacci numbers).
T(n,1) = A054454(n-4).
Sum_{k>=0} k*T(n,k) = A191309(n).
FORMULA
G.f.: G=G(t,z) satisfies G = 1+z*G + z^2*G(1+t*r), where r=r(t,z) is given by r=z^2*(1+r)*(1+t*r) (the Narayana function).
EXAMPLE
T(7,2)=2 because we have HUUDUDD and UUDUDDH, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
1;
1;
2;
3;
5, 1;
8, 2;
13, 6, 1;
21, 12, 2;
MAPLE
r := ((1-z^2-t*z^2-sqrt(((1-z)^2-t*z^2)*((1+z)^2-t*z^2)))*1/2)/(t*z^2): G := 1/(1-z-z^2*(1+t*r)): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 17 do P[n] := sort(coeff(Gser, z, n)) end do: 1; 1; for n from 2 to 17 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)-1) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 30 2011
STATUS
approved