|
|
A054454
|
|
Third column of triangle A054453.
|
|
6
|
|
|
1, 2, 6, 12, 26, 50, 97, 180, 332, 600, 1076, 1908, 3361, 5878, 10226, 17700, 30510, 52390, 89665, 153000, 260376, 442032, 748776, 1265832, 2136001, 3598250, 6052062, 10164540, 17048642
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Gregg Musiker, Nick Ovenhouse, and Sylvester W. Zhang, Double Dimers and Super Ptolemy Relations, Séminaire Lotharingien de Combinatoire XX, Proc. 35th Conf. Formal Power, Series and Algebraic Combinatorics (Davis) 2023, Art. #YY. See p. 12.
|
|
FORMULA
|
a(2*k) = 1 + (8*n*Fibonacci(2*n+1) + 3*(2*n+1)*Fibonacci(2*n))/5.
a(2*k+1) = 2*(2*(2*n+1)*Fibonacci(2*(n+1)) + 3*(n+1)*Fibonacci(2*n+1))/5.
G.f.: ((Fib(x))^2)/(1-x^2), with Fib(x)=1/(1-x-x^2) = g.f. A000045(n+1)(Fibonacci numbers without F(0)).
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) - 2*a(n-4) + 2*a(n-5) + a(n-6) where a(0)=1, a(1)=2, a(2)=6, a(3)=12, a(4)=26, a(5)=50. - Harvey P. Dale, May 06 2012
|
|
MATHEMATICA
|
CoefficientList[Series[(1/(1-x-x^2))^2/(1-x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 2, -4, -2, 2, 1}, {1, 2, 6, 12, 26, 50}, 30] (* Harvey P. Dale, May 06 2012 *)
|
|
PROG
|
(PARI) my(x='x+O('x^30)); Vec(1/((1-x^2)*(1-x-x^2)^2)) \\ G. C. Greubel, Jan 31 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/((1-x^2)*(1-x-x^2)^2) )); // G. C. Greubel, Jan 31 2019
(Sage) (1/((1-x^2)*(1-x-x^2)^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
(GAP) a:=[1, 2, 6, 12, 26, 50];; for n in [7..30] do a[n]:=2*a[n-1]+2*a[n-2] -4*a[n-3]-2*a[n-4]+2*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Jan 31 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|