login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054454
Third column of triangle A054453.
6
1, 2, 6, 12, 26, 50, 97, 180, 332, 600, 1076, 1908, 3361, 5878, 10226, 17700, 30510, 52390, 89665, 153000, 260376, 442032, 748776, 1265832, 2136001, 3598250, 6052062, 10164540, 17048642
OFFSET
0,2
LINKS
Charles H. Conley and Valentin Ovsienko, Shadows of rationals and irrationals: supersymmetric continued fractions and the super modular group, arXiv:2209.10426 [math-ph], 2022.
Kálmán Liptai, László Németh, Tamás Szakács, and László Szalay, On certain Fibonacci representations, arXiv:2403.15053 [math.NT], 2024. See p. 8.
Gregg Musiker, Nick Ovenhouse, and Sylvester W. Zhang, Double Dimers and Super Ptolemy Relations, Séminaire Lotharingien de Combinatoire XX, Proc. 35th Conf. Formal Power, Series and Algebraic Combinatorics (Davis) 2023, Art. #YY. See p. 12.
László Németh, Walks on tiled boards, arXiv:2403.12159 [math.CO], 2024. See p. 3.
Tamás Szakács, Linear recursive sequences and factorials, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 23.
FORMULA
a(n) = A054453(n+2, 2).
a(2*k) = 1 + (8*n*Fibonacci(2*n+1) + 3*(2*n+1)*Fibonacci(2*n))/5.
a(2*k+1) = 2*(2*(2*n+1)*Fibonacci(2*(n+1)) + 3*(n+1)*Fibonacci(2*n+1))/5.
G.f.: ((Fib(x))^2)/(1-x^2), with Fib(x)=1/(1-x-x^2) = g.f. A000045(n+1)(Fibonacci numbers without F(0)).
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) - 2*a(n-4) + 2*a(n-5) + a(n-6) where a(0)=1, a(1)=2, a(2)=6, a(3)=12, a(4)=26, a(5)=50. - Harvey P. Dale, May 06 2012
MATHEMATICA
CoefficientList[Series[(1/(1-x-x^2))^2/(1-x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 2, -4, -2, 2, 1}, {1, 2, 6, 12, 26, 50}, 30] (* Harvey P. Dale, May 06 2012 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1/((1-x^2)*(1-x-x^2)^2)) \\ G. C. Greubel, Jan 31 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/((1-x^2)*(1-x-x^2)^2) )); // G. C. Greubel, Jan 31 2019
(Sage) (1/((1-x^2)*(1-x-x^2)^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
(GAP) a:=[1, 2, 6, 12, 26, 50];; for n in [7..30] do a[n]:=2*a[n-1]+2*a[n-2] -4*a[n-3]-2*a[n-4]+2*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Jan 31 2019
CROSSREFS
Sequence in context: A335724 A300120 A246584 * A084170 A245264 A327477
KEYWORD
easy,nonn
AUTHOR
Wolfdieter Lang, Apr 27 2000
STATUS
approved