login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246584
Number of overcubic partitions of n.
7
1, 2, 6, 12, 26, 48, 92, 160, 282, 470, 784, 1260, 2020, 3152, 4896, 7456, 11290, 16836, 24962, 36556, 53232, 76736, 110012, 156384, 221156, 310482, 433776, 602200, 832224, 1143696, 1565088, 2131072, 2890266, 3902344, 5249356, 7032576, 9389022, 12488368
OFFSET
0,2
COMMENTS
Convolution of A001935 and A002513. - Vaclav Kotesovec, Aug 16 2019
LINKS
Michael D. Hirschhorn, A note on overcubic partitions, New Zealand J. Math., 42:229-234, 2012.
Bernard L. S. Lin, Arithmetic properties of overcubic partition pairs, Electronic Journal of Combinatorics 21(3) (2014), #P3.35.
James A. Sellers, Elementary proofs of congruences for the cubic and overcubic partition functions, Australasian Journal of Combinatorics, 60(2) (2014), 191-197.
FORMULA
G.f.: Product_{k>=1} (1+x^k) * (1+x^(2*k)) / ((1-x^k) * (1-x^(2*k))). - Vaclav Kotesovec, Aug 16 2019
a(n) ~ 3^(3/4) * exp(sqrt(3*n/2)*Pi) / (2^(19/4)*n^(5/4)). - Vaclav Kotesovec, Aug 16 2019
MAPLE
# to get 140 terms:
ph:=add(q^(n^2), n=-12..12);
ph:=series(ph, q, 140);
g1:=1/(subs(q=-q, ph)*subs(q=-q^2, ph));
g1:=series(g1, q, 140);
seriestolist(%);
# second Maple program:
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d*
`if`(irem(d, 4)=2, 3, 2), d=divisors(j)), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Aug 17 2019
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) / ((1-x^k) * (1-x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 16 2019 *)
nmax = 50; CoefficientList[Series[Product[(1+x^(2*k)) / (1-x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 16 2019 *)
CROSSREFS
Trisections: A246585, A246586, A246587.
Sequence in context: A141347 A335724 A300120 * A054454 A084170 A245264
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 03 2014
STATUS
approved