OFFSET
0,15
REFERENCES
Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 3, with k=4.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
FORMULA
a(n) ~ (-1)^n * 3^(3/4) * n^(1/4) * exp(sqrt(n/6)*Pi) / (2^(15/4)*Pi^2). - Vaclav Kotesovec, Mar 12 2016
MAPLE
fSp:=proc(k) local a, i, r;
a:=x^((k^2+k)/2)/mul(1-x^i, i=1..k);
a:=a/mul(1+x^r, r=1..101);
series(a, x, 101);
seriestolist(%);
end;
fSp(4);
MATHEMATICA
nmax = 100; CoefficientList[Series[x^10/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) * Product[1/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 11 2016 *)
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Aug 31 2014
STATUS
approved