login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246583
G.f.: x^((k^2+k)/2)/(mul(1-x^i,i=1..k)*mul(1+x^r,r=1..oo)) with k = 4.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, -1, 2, -2, 3, -4, 3, -6, 5, -9, 6, -12, 10, -16, 13, -20, 20, -26, 26, -32, 37, -41, 47, -51, 63, -65, 78, -81, 101, -103, 123, -128, 155, -161, 187, -199, 232, -247, 278, -302, 341, -371, 407, -449, 495, -545, 589, -654, 711, -786, 843, -936, 1011, -1116, 1194, -1320, 1423, -1563, 1674
OFFSET
0,15
REFERENCES
Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 3, with k=4.
LINKS
FORMULA
a(n) ~ (-1)^n * 3^(3/4) * n^(1/4) * exp(sqrt(n/6)*Pi) / (2^(15/4)*Pi^2). - Vaclav Kotesovec, Mar 12 2016
MAPLE
fSp:=proc(k) local a, i, r;
a:=x^((k^2+k)/2)/mul(1-x^i, i=1..k);
a:=a/mul(1+x^r, r=1..101);
series(a, x, 101);
seriestolist(%);
end;
fSp(4);
MATHEMATICA
nmax = 100; CoefficientList[Series[x^10/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) * Product[1/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 11 2016 *)
CROSSREFS
For k=0 and 1 we get A081362, A027349 (apart from signs). Cf. A246581, A246582.
Sequence in context: A003113 A225502 A152227 * A244788 A078660 A239239
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Aug 31 2014
STATUS
approved