login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: x^((k^2+k)/2)/(mul(1-x^i,i=1..k)*mul(1+x^r,r=1..oo)) with k = 4.
3

%I #12 Mar 12 2016 15:30:16

%S 0,0,0,0,0,0,0,0,0,0,1,0,1,0,2,-1,2,-2,3,-4,3,-6,5,-9,6,-12,10,-16,13,

%T -20,20,-26,26,-32,37,-41,47,-51,63,-65,78,-81,101,-103,123,-128,155,

%U -161,187,-199,232,-247,278,-302,341,-371,407,-449,495,-545,589,-654,711,-786,843,-936,1011,-1116,1194,-1320,1423,-1563,1674

%N G.f.: x^((k^2+k)/2)/(mul(1-x^i,i=1..k)*mul(1+x^r,r=1..oo)) with k = 4.

%D Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 3, with k=4.

%H Vaclav Kotesovec, <a href="/A246583/b246583.txt">Table of n, a(n) for n = 0..5000</a>

%F a(n) ~ (-1)^n * 3^(3/4) * n^(1/4) * exp(sqrt(n/6)*Pi) / (2^(15/4)*Pi^2). - _Vaclav Kotesovec_, Mar 12 2016

%p fSp:=proc(k) local a,i,r;

%p a:=x^((k^2+k)/2)/mul(1-x^i,i=1..k);

%p a:=a/mul(1+x^r,r=1..101);

%p series(a,x,101);

%p seriestolist(%);

%p end;

%p fSp(4);

%t nmax = 100; CoefficientList[Series[x^10/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) * Product[1/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Mar 11 2016 *)

%Y For k=0 and 1 we get A081362, A027349 (apart from signs). Cf. A246581, A246582.

%K sign

%O 0,15

%A _N. J. A. Sloane_, Aug 31 2014