login
A191305
Triangle read by rows: T(n,k) is the number of dispersed Dyck paths (i.e., Motzkin paths with no (1,0) steps at positive heights) of length n having k hills (i.e., peaks at height 1).
0
1, 1, 1, 1, 1, 2, 2, 3, 1, 3, 4, 3, 6, 7, 6, 1, 9, 12, 10, 4, 18, 23, 18, 10, 1, 28, 40, 33, 20, 5, 57, 76, 64, 39, 15, 1, 91, 134, 120, 76, 35, 6, 187, 257, 231, 152, 75, 21, 1, 304, 460, 433, 300, 156, 56, 7, 629, 888, 834, 595, 325, 132, 28, 1, 1037, 1606, 1572, 1164, 670, 294, 84, 8, 2157, 3115, 3035, 2292, 1375, 642, 217, 36, 1
OFFSET
0,6
COMMENTS
Row n has 1 + floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
Sum_{k>=0}k*T(n,k) = A045621(n-2).
FORMULA
G.f.: G=G(t,z) satisfies G = 1+z*G + z^2*G(C-1+t), where C=1+z^2*C^2 (and G=2/(1-2*z+2*z^2-2*t*z^2+sqrt(1-4*z^2)), see Maple program).
EXAMPLE
T(5,2)=3 because we have HUDUD, UDHUD, and UDUDH, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
1;
1;
1, 1;
1, 2;
2, 3, 1;
3, 4, 3;
6, 7, 6, 1;
9, 12, 10, 4;
MAPLE
G := 2/(1-2*z+2*z^2-2*t*z^2+sqrt(1-4*z^2)): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
CROSSREFS
Sequence in context: A205456 A080045 A191384 * A227287 A289236 A280172
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 30 2011
STATUS
approved