OFFSET
0,6
COMMENTS
FORMULA
G.f.: G=G(t,z) satisfies G = 1+z*G + z^2*G(C-1+t), where C=1+z^2*C^2 (and G=2/(1-2*z+2*z^2-2*t*z^2+sqrt(1-4*z^2)), see Maple program).
EXAMPLE
T(5,2)=3 because we have HUDUD, UDHUD, and UDUDH, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
1;
1;
1, 1;
1, 2;
2, 3, 1;
3, 4, 3;
6, 7, 6, 1;
9, 12, 10, 4;
MAPLE
G := 2/(1-2*z+2*z^2-2*t*z^2+sqrt(1-4*z^2)): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 30 2011
STATUS
approved