login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227287 G.f.: Sum_{n>=0} x^(n - b(n)) * (1+x)^b(n), where b(n) = A007814(n), which is the exponent of the highest power of 2 dividing n. 3
1, 2, 2, 3, 1, 3, 4, 4, 1, 2, 2, 3, 2, 6, 7, 5, 1, 2, 2, 3, 1, 3, 4, 4, 1, 2, 2, 4, 6, 12, 11, 6, 1, 2, 2, 3, 1, 3, 4, 4, 1, 2, 2, 3, 2, 6, 7, 5, 1, 2, 2, 3, 1, 3, 4, 4, 1, 2, 3, 9, 16, 22, 16, 7, 1, 2, 2, 3, 1, 3, 4, 4, 1, 2, 2, 3, 2, 6, 7, 5, 1, 2, 2, 3, 1, 3, 4, 4, 1, 2, 2, 4, 6, 12, 11, 6, 1, 2, 2, 3, 1, 3, 4, 4, 1, 2, 2, 3, 2, 6, 7, 5, 1, 2, 2, 3, 1, 3, 4, 4, 1, 3, 9, 24, 36, 37, 22, 8, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The g.f. of related sequence A227277 is: Sum_{n>=0} x^n*(1+x)^A007814(n).

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..10000

FORMULA

Limit of rows, when read in reverse, of A227277 when formatted into a triangle having 2^n terms in row n>=0.

EXAMPLE

G.f.: A(x) = 1 + 2*x + 2*x^2 + 3*x^3 + x^4 + 3*x^5 + 4*x^6 + 4*x^7 + x^8 + 2*x^9 + 2*x^10 + 3*x^11 + 2*x^12 + 6*x^13 + 7*x^14 + 5*x^15 + x^16 +...

where

A(x) = 1 + x + x^(2-1)*(1+x) + x^3 + x^(4-2)*(1+x)^2 + x^5 + x^(6-1)*(1+x) + x^7 + x^(8-3)*(1+x)^3 + x^9 + x^(10-1)*(1+x) + x^11 + x^(12-2)*(1+x)^2 + x^13 + x^(14-1)*(1+x) + x^(16-4)*(1+x)^4 +...

GENERATED AS A LIMIT FROM A227277.

Take A227277, ignore the initial 2 terms, then format as a triangle having 2^n terms in row n>=0; the resulting triangle begins:

1;

2, 1;

3, 2, 2, 1;

4, 4, 3, 1, 3, 2, 2, 1;

5, 7, 6, 2, 3, 2, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1;

6, 11, 12, 6, 4, 2, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1, 5, 7, 6, 2, 3, 2, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1;

7, 16, 22, 16, 9, 3, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1, 5, 7, 6, 2, 3, 2, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1, 6, 11, 12, 6, 4, 2, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1, 5, 7, 6, 2, 3, 2, 2, 1, 4, 4, 3, 1, 3, 2, 2, 1; ...

Note that the rows, when read in reverse, tend to this sequence as a limit.

PROG

(PARI) {a(n)=polcoeff(1+sum(k=1, n+#binary(n), x^(k-valuation(k, 2))*(1+x)^valuation(k, 2)+x*O(x^n)), n)}

for(n=0, 128, print1(a(n), ", "))

CROSSREFS

Cf. A227277, A227318, A007814.

Sequence in context: A080045 A191384 A191305 * A289236 A280172 A337942

Adjacent sequences:  A227284 A227285 A227286 * A227288 A227289 A227290

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 04 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 22:35 EDT 2021. Contains 348180 sequences. (Running on oeis4.)