login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227318
G.f.: Sum_{n>=0} x^n * (1-x)^A007814(n), where A007814(n) is the exponent of the highest power of 2 dividing n.
3
1, 1, 1, 0, 1, -1, 2, 0, 1, -2, 4, -1, 1, -1, 2, 0, 1, -3, 7, -4, 2, -1, 2, 0, 1, -2, 4, -1, 1, -1, 2, 0, 1, -4, 11, -10, 6, -2, 2, 0, 1, -2, 4, -1, 1, -1, 2, 0, 1, -3, 7, -4, 2, -1, 2, 0, 1, -2, 4, -1, 1, -1, 2, 0, 1, -5, 16, -20, 16, -7, 3, 0, 1, -2, 4, -1, 1, -1, 2, 0, 1, -3, 7, -4, 2, -1, 2, 0, 1, -2, 4, -1, 1, -1, 2, 0, 1, -4, 11, -10, 6, -2, 2, 0, 1, -2, 4, -1, 1, -1, 2, 0, 1, -3, 7, -4, 2, -1, 2, 0, 1, -2, 4, -1, 1, -1, 2, 0, 1
OFFSET
0,7
COMMENTS
Compare to g.f. of A227277: Sum_{n>=0} x^n*(1+x)^A007814(n).
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^4 - x^5 + 2*x^6 + x^8 - 2*x^9 + 4*x^10 - x^11 + x^12 - x^13 + 2*x^14 + x^16 - 3*x^17 + 7*x^18 - 4*x^19 + 2*x^20 +...
where
A(x) = 1 + x + x^2*(1-x) + x^3 + x^4*(1-x)^2 + x^5 + x^6*(1-x) + x^7 + x^8*(1-x)^3 + x^9 + x^10*(1-x) + x^11 + x^12*(1-x)^2 + x^13 + x^14*(1-x) + x^16*(1-x)^4 +...
PROG
(PARI) {a(n)=polcoeff(1+sum(m=1, n, x^m*(1-x+x*O(x^n))^valuation(m, 2)), n)}
for(n=0, 128, print1(a(n), ", "))
CROSSREFS
Sequence in context: A264157 A361853 A144172 * A166692 A046766 A292147
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 06 2013
STATUS
approved