login
A264157
Decimal expansion of M_7, the 7-dimensional analog of Madelung's constant (negated).
2
2, 0, 1, 2, 4, 0, 5, 9, 8, 9, 7, 9, 7, 9, 8, 6, 0, 6, 4, 3, 9, 5, 0, 3, 0, 6, 3, 5, 8, 0, 4, 3, 0, 0, 4, 4, 1, 6, 5, 6, 7, 8, 0, 6, 5, 8, 1, 2, 1, 9, 2, 9, 3, 2, 8, 7, 8, 4, 9, 0, 4, 6, 9, 1, 1, 7, 3
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 77.
LINKS
Eric Weisstein's World of Mathematics, Madelung Constants.
FORMULA
M_7 = 1/sqrt(Pi) integral_{0..infinity} ((sum_{k=-infinity..infinity} ((-1)^k exp(-k^2 t))^7-1)/sqrt(t) dt
EXAMPLE
-2.01240598979798606439503063580430044165678065812192932878490469117330...
MATHEMATICA
digits = 32; f[n_, x_] := 1/Sqrt[Pi*x]*(EllipticTheta[4, 0, Exp[-x]]^n - 1); M[7] = NIntegrate[f[7, x], {x, 0, Infinity}, WorkingPrecision -> digits + 5]; RealDigits[M[7], 10, digits] // First
PROG
(PARI) th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2)
intnum(x=0, [oo, 1], (th4(exp(-x))^7-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 06 2016
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More terms from Charles R Greathouse IV, Jun 06 2016
STATUS
approved