login
A264154
For numbers m such that rad(n) divides sigma(n), this sequence gives the minimum exponent k such that sigma(m)^k divides m.
2
1, 1, 2, 1, 3, 3, 3, 1, 3, 3, 2, 2, 2, 3, 4, 5, 1, 3, 2, 2, 7, 1, 2, 4, 3, 3, 2, 3, 3, 2, 5, 2, 2, 3, 3, 5, 2, 3, 7, 3, 3, 3, 5, 3, 4, 2, 5, 3, 2, 7, 2, 3, 3, 3, 5, 2, 7, 2, 6, 2, 5, 3, 2, 3, 3, 2, 3, 1, 3, 3, 4, 3, 11, 4, 7, 3, 2, 2, 5, 3, 3, 5, 3, 4, 4, 7, 4
OFFSET
1,3
LINKS
EXAMPLE
A175200(2) is 6, and for 6, sigma(6)^k/6 is already an integer with k=1, so a(2)=6.
A175200(3) is 24, and for 24, sigma(24)/24 is not an integer while sigma(24)^2/24 is an integer, so a(3)=2.
PROG
(PARI) fk(s, m) = {j = 1; while(denominator(s^j/m) != 1, j++); j; }
rad(n) = factorback(factorint(n)[, 1]);
lista(nn) = {for (n=1, nn, if (denominator(sigma(n)/rad(n)) == 1, k = fk(sigma(n), n); print1(k, ", "); ); ); }
CROSSREFS
Cf. A000203 (sigma(n)), A007947 (rad(n)), A175200.
Sequence in context: A124770 A334300 A308093 * A302641 A099246 A303119
KEYWORD
nonn
AUTHOR
Michel Marcus, Nov 06 2015
STATUS
approved