login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264151
Row sums of A179455.
2
1, 1, 3, 12, 63, 398, 2911, 24177, 224824, 2313892, 26107679, 320412404, 4249353369, 60561549764, 923107802463, 14985538729504, 258138422935578, 4702896016961154, 90350619640638353, 1825564783445799571, 38700814850328413380, 858915876402686598209, 19916917035087719607321
OFFSET
0,3
LINKS
Swapnil Garg, Alan Peng, Classical and consecutive pattern avoidance in rooted forests, arXiv:2005.08889 [math.CO], May 2020.
Peter Luschny, Permutation Trees
FORMULA
a(n) = Sum_{k=0..n} (n-k+1)*A179454(n,k), where A179454(n,k) is read as a (0,0)-based table with an additional column (1,0,0,0,...) at the left hand side.
EXAMPLE
a(4) = 5*0 + 4*1 + 3*14 + 2*8 + 1*1 = 63.
PROG
(Sage) # uses[bell_transform from A264428]
def A264151_list(len):
b = [1]+[0]*(len-1); L = [b]
for k in range(len):
b = [sum((bell_transform(n, b))) for n in range(len)]
L.append(b)
return [sum(L[k][n] for k in (0..n)) for n in range(len)]
print(A264151_list(10))
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 06 2015
STATUS
approved