The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264149 Denominators of rational coefficients related to Stirling's asymptotic series for the Gamma function. 2
 1, 3, 12, 135, 288, 2835, 51840, 8505, 2488320, 12629925, 209018880, 492567075, 75246796800, 1477701225, 902961561600, 39565450299375, 86684309913600, 2255230667064375, 514904800886784000, 6765692001193125, 86504006548979712000, 7002491221234884375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS See A264148 for definitions and cross-references. LINKS G. C. Greubel, Table of n, a(n) for n = 0..589 MAPLE h := proc(k) option remember; local j; `if`(k<=0, 1, (h(k-1)/k-add((h(k-j)*h(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end: SGGS := n -> h(n)*doublefactorial(n-1): A264149 := n -> denom(SGGS(n)); seq(A264149(n), n=0..26); MATHEMATICA h[k_]:= h[k] = If[k <= 0, 1, (h[k - 1]/k - Sum[h[k - j]*h[j]/(j + 1), {j, 1, k - 1}])/(1 + 1/(k + 1))]; a[n_]:= h[n]*Factorial2[n - 1] // Denominator; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Feb 09 2018 *) PROG (Sage) def A264149(n):     @cached_function     def h(k):         if k<=0: return 1         S = sum((h(k-j)*h(j))/(j+1) for j in (1..k-1))         return (h(k-1)/k-S)/(1+1/(k+1))     return denominator(h(n)*(n-1).multifactorial(2)) print [A264149(n) for n in (0..21)] CROSSREFS Cf. numerators in A264148. Sequence in context: A138392 A152544 A280115 * A035087 A056426 A056417 Adjacent sequences:  A264146 A264147 A264148 * A264150 A264151 A264152 KEYWORD nonn,frac AUTHOR Peter Luschny, Nov 05 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 14:02 EST 2020. Contains 331094 sequences. (Running on oeis4.)