login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035087
Number of labeled rooted polygonal cacti (Husimi graphs) with n nodes.
3
1, 0, 3, 12, 135, 1440, 20895, 342720, 6585705, 142430400, 3449279295, 92207808000, 2699909867655, 85900402748160, 2951318065570875, 108894519775641600, 4294542443185019025, 180277244225580902400, 8025792422657714379675, 377695544010698833920000
OFFSET
1,3
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 301.
Harary and E. M. Palmer, Graphical Enumeration, p. 71
F. Harary and R. Z. Norman "The Dissimilarity Characteristic of Husimi Trees" Annals of Mathematics, 58 1953, pp. 134-141
F. Harary and G. E. Uhlenbeck "On the Number of Husimi Trees" Proc. Nat. Acad. Sci. USA vol. 39 pp. 315-322 1953
FORMULA
E.g.f. satisfies A(x)=x*exp(A(x)^2/(2-2*A(x))).
a(n) ~ (1-s)^2 * sqrt(2/(6-11*s+4*s^2)) * n^(n-1) / (s * exp(1 - s^2/(2*(1-s))))^n, where s = 0.5391888728108891165... is the root of the equation 2-4*s+s^3=0. - Vaclav Kotesovec, Jan 08 2014
MAPLE
A:= proc(n) option remember; if n<=1 then x else convert(series(x* exp(A(n-1)^2/ (2-2*A(n-1))), x=0, n+1), polynom) fi end: a:= n-> coeff(A(n), x, n)*n!: seq(a(n), n=1..30); # Alois P. Heinz, Aug 22 2008
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[E^(x^2/(2*(x-1)))*x, {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
Christian G. Bower, Nov 15 1998
STATUS
approved