login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A035090
Non-palindromic squares which when written backwards remain square (and still have the same number of digits).
12
144, 169, 441, 961, 1089, 9801, 10404, 10609, 12544, 12769, 14884, 40401, 44521, 48841, 90601, 96721, 1004004, 1006009, 1022121, 1024144, 1026169, 1042441, 1044484, 1062961, 1212201, 1214404, 1216609, 1236544, 1238769, 1256641
OFFSET
1,1
COMMENTS
Squares with trailing zeros not included.
Sequence is infinite, since it includes, e.g., 10^(2k) + 4*10^k + 4 for all k. - Robert Israel, Sep 20 2015
FORMULA
a(n) = A035123(n)^2. - R. J. Mathar, Jan 25 2017
MAPLE
rev:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
filter:= proc(n) local t;
if n mod 10 = 0 then return false fi;
t:= rev(n);
t <> n and issqr(t)
end proc:
select(filter, [seq(n^2, n=1..10^5)]); # Robert Israel, Sep 20 2015
MATHEMATICA
Select[Range[1200]^2, !PalindromeQ[#]&&IntegerLength[#]==IntegerLength[ IntegerReverse[ #]] && IntegerQ[Sqrt[IntegerReverse[#]]]&] (* Harvey P. Dale, Jul 19 2023 *)
CROSSREFS
Reversing a polytopal number gives a polytopal number:
cube to cube: A035123, A035124, A035125, A002781;
square to square: A161902, A035090, A033294, A106323, A106324, A002779;
square to triangular: A181412, A066702;
tetrahedral to tetrahedral: A006030;
triangular to square: A066703, A179889;
triangular to triangular: A066528, A069673, A003098, A066569.
Cf. A319388.
Sequence in context: A085426 A034289 A062917 * A064021 A156316 A323614
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Nov 15 1998
STATUS
approved