The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264148 Numerators of rational coefficients related to Stirling's asymptotic series for the Gamma function. 5
 1, 2, 1, -4, 1, 8, -139, 16, -571, -8992, 163879, -334144, 5246819, 698752, -534703531, 23349012224, -4483131259, -1357305243136, 432261921612371, -6319924923392, 6232523202521089, 8773495082018816, -25834629665134204969, 49004477022654464, -1579029138854919086429 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The rational numbers SGGS = A264148/A264149 (SGGS stands for 'Stirling Generalized Gamma Series') are a supersequence of the coefficients in Stirling's asymptotic series for the Gamma function A001163/A001164 and of an asymptotic expansion of Ramanujan A090804/A065973, further they appear in scaled form in an expansion of -W_{-1}(-e^{-1-x^2/2}) where W_{-1} is Lambert W function A005447/A005446. Ramanujan's asymptotic expansion theta(n) = 1/3+4/(135n)-8/(2835n^2)- ... is considered in the literature also in the form 1-theta(n) (see for example formula (5) in the Choi link). It is this form to which we refer here. LINKS G. C. Greubel, Table of n, a(n) for n = 0..360 K. P. Choi, On the medians of gamma distributions and an equation of Ramanujan, Proceedings of the American Mathematical Society 121:1 (May, 1994), pp. 245-251. [From Vladimir Reshetnikov] G. Nemes, On the coefficients of the asymptotic expansion of n!, J. Integer Seqs. 13 (2010), 5. [From Vladimir Reshetnikov] FORMULA Let SGGS(n) = h(n)*doublefactorial(n-1) where h(n) = 1 for n<=0 and for n>0 defined by the recurrence (h(k-1)/k - Sum_{j=1..k-1}((h(k-j)*h(j))/(j+1))/ (1+1/(k+1))) then a(n) = numerator(SGGS(n)). MAPLE h := proc(k) option remember; local j; `if`(k<=0, 1, (h(k-1)/k-add((h(k-j)*h(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end: SGGS := n -> h(n)*doublefactorial(n-1): A264148 := n -> numer(SGGS(n)): seq(A264148(n), n=0..24); MATHEMATICA h[k_] := h[k] = If[k <= 0, 1, (h[k - 1]/k - Sum[h[k - j]*h[j]/(j + 1), {j, 1, k - 1}]) / (1 + 1/(k + 1))]; a[n_] := h[n]* Factorial2[n - 1] // Numerator; Table[a[n], {n, 0, 24}] PROG (Sage) def A264148(n): @cached_function def h(k): if k<=0: return 1 S = sum((h(k-j)*h(j))/(j+1) for j in (1..k-1)) return (h(k-1)/k-S)/(1+1/(k+1)) return numerator(h(n)*(n-1).multifactorial(2)) print([A264148(n) for n in (0..17)]) CROSSREFS A264148(n) = numerator(SGGS(n)). A264149(n) = denominator(SGGS(n)). A001163(n) = numerator(SGGS(2*n)) = numerator(SGGS(2*n)/2^(n+1)). A001164(n) = denominator(SGGS(2*n)). A090804(n) = numerator(SGGS(2*n+1)). A065973(n) = denominator(SGGS(2*n+1)) = denominator(SGGS(2*n+1)/2^(n+1)). A005447(n+1) = numerator(SGGS(n)/2^(n+1)). A264150(n) = numerator(SGGS(2*n+1)/2^(n+1)). Sequence in context: A112481 A134851 A355227 * A038001 A147080 A146418 Adjacent sequences: A264145 A264146 A264147 * A264149 A264150 A264151 KEYWORD sign,frac AUTHOR Peter Luschny, Nov 05 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 20:13 EDT 2023. Contains 363100 sequences. (Running on oeis4.)