OFFSET
2,2
COMMENTS
The independence number alpha(G) of a graph is the cardinality of the largest independent vertex set. The n-folded cube has alpha(G) = A058622(n-1). The independence polynomial for the n-folded cube is given by Sum_{k=0..alpha(G)} T(n,k)*t^k.
Since 0 <= k <= alpha(G), row n has length A058622(n-1) + 1.
LINKS
Eric Weisstein's World of Mathematics, Independence polynomial
Eric Weisstein's World of Mathematics, Folded cube graph
EXAMPLE
Triangle begins:
k = 1 2 3 4 5 6
n = 2: 1, 2
n = 3: 1, 4
n = 4: 1, 8, 12, 8, 2
n = 5: 1, 16, 80, 160, 120, 16
The 5-folded cube graph has independence polynomial 1 + 16*t + 80*t^2 + 160*t^3 + 120*t^4 + 16*t^5.
PROG
(Sage) from sage.graphs.independent_sets import IndependentSets
def row(n):
g = graphs.FoldedCubeGraph(n)
if n % 2 == 0:
setCounts = [0] * (pow(2, n-2) + 1)
else:
size = int(pow(2, n-2) - 1/4 * (1-pow(-1, n)) * math.comb(n-1, 1/2 * (n-1)) + 1)
setCounts = [0] * size
for Iset in IndependentSets(g):
setCounts[len(Iset)] += 1
return setCounts
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Christopher Flippen, Jun 24 2022
STATUS
approved