login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355229
E.g.f. A(x) satisfies A'(x) = 1 - log(1-x) * A(x).
2
0, 1, 0, 2, 3, 16, 65, 365, 2261, 16240, 131097, 1182013, 11779537, 128737088, 1532051287, 19731964705, 273556185109, 4062828620256, 64368863326717, 1083795820014261, 19327395713028985, 363940825109825200, 7216468161637890899, 150304143164083288441
OFFSET
0,4
FORMULA
a(0) = 0, a(1) = 1; a(n+1) = Sum_{k=1..n-1} (k-1)! * binomial(n,k) * a(n-k).
E.g.f.: (1-x)^(1-x) / exp(1-x) * Integral(exp(1-x) / (1-x)^(1-x) dx). - Vaclav Kotesovec, Jun 25 2022
MATHEMATICA
nmax = 25; CoefficientList[Series[(1-x)^(1-x) / E^(1-x) * Integrate[E^(1-x) / (1-x)^(1-x), x], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 25 2022 *)
PROG
(PARI) a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=sum(j=1, i-1, (j-1)!*binomial(i, j)*v[i-j])); concat(0, v);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 25 2022
STATUS
approved