login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087650
a(n) = Sum_{k=0..n} (-1)^(n-k)*Bell(k).
10
1, 0, 2, 3, 12, 40, 163, 714, 3426, 17721, 98254, 580316, 3633281, 24011156, 166888166, 1216070379, 9264071768, 73600798036, 608476008123, 5224266196934, 46499892038438, 428369924118313, 4078345814329010, 40073660040755336
OFFSET
0,3
COMMENTS
a(n) is the number of set partitions of [n] that contain exactly one singleton block and all other blocks contain an entry > this singleton. For example, a(3)=3 counts 124/3, 134/2, 1/234 but not 123/4. - David Callan, Aug 27 2014
Partial sums are A173109. - Vladimir Reshetnikov, Oct 29 2015
FORMULA
E.g.f.: exp(-x)*((exp(x)-1)*exp(exp(x)-1)+1).
a(n) = (-1)^n + Bell(n) - A000296(n), with Bell(n) = A000110(n). - Wolfdieter Lang, Dec 01 2003
a(n) = A000296(n+1) + (-1)^n. - David Callan, Aug 27 2014
G.f.: 1/(1+x)/W(0), where W(k) = 1 - x/(1 - x*(k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 10 2014
a(0) = 1; a(n) = Sum_{k=1..n-1} binomial(n,k) * a(k-1). - Ilya Gutkovskiy, Mar 04 2021
EXAMPLE
G.f. = 1 + 2*x^2 + 3*x^3 + 12*x^4 + 40*x^5 + 163*x^6 + 714*x^7 + ...
MATHEMATICA
f[n_] := Sum[ StirlingS2[n, k], {k, 1, n}]; Table[(-1)^n + Sum[(-1)^(n - k)*f[k], {k, 0, n}], {n, 0, 23}] (* Robert G. Wilson v *)
Needs["DiscreteMath`Combinatorica`"]; Table[ Sum[(-1)^(n - k)*BellB[k], {k, 0, n}], {n, 0, 23}] (* Robert G. Wilson v *)
PROG
(Maxima) makelist(sum((-1)^(n-k)*belln(k), k, 0, n), n, 0, 40); // Emanuele Munarini, Sep 27 2012
(Sage)
def A087650_list(len): # After the formula of David Callan.
if len == 1: return [1]
if len == 2: return [1, 0]
R = []; A = [1]; p = -1
for i in (0..len-1):
A.append(A[0] - A[i])
A[i] = A[0]
for k in range(i, 0, -1):
A[k-1] += A[k]
p = -p
R.append(A[i+1] + p)
return R
A087650_list(24) # Peter Luschny, Aug 28 2014
(PARI) vector(30, n, n--; sum(k=0, n, (-1)^(n-k)*polcoeff(sum(i=0, k, prod( j=1, i, x / (1 - j*x)), x^k * O(x)), k))) \\ Altug Alkan, Oct 30 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Sep 23 2003
STATUS
approved