login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} (-1)^(n-k)*Bell(k).
10

%I #56 Jan 11 2025 17:06:50

%S 1,0,2,3,12,40,163,714,3426,17721,98254,580316,3633281,24011156,

%T 166888166,1216070379,9264071768,73600798036,608476008123,

%U 5224266196934,46499892038438,428369924118313,4078345814329010,40073660040755336

%N a(n) = Sum_{k=0..n} (-1)^(n-k)*Bell(k).

%C a(n) is the number of set partitions of [n] that contain exactly one singleton block and all other blocks contain an entry > this singleton. For example, a(3)=3 counts 124/3, 134/2, 1/234 but not 123/4. - _David Callan_, Aug 27 2014

%C Partial sums are A173109. - _Vladimir Reshetnikov_, Oct 29 2015

%F E.g.f.: exp(-x)*((exp(x)-1)*exp(exp(x)-1)+1).

%F a(n) = (-1)^n + Bell(n) - A000296(n), with Bell(n) = A000110(n). - _Wolfdieter Lang_, Dec 01 2003

%F a(n) = A000296(n+1) + (-1)^n. - _David Callan_, Aug 27 2014

%F G.f.: 1/(1+x)/W(0), where W(k) = 1 - x/(1 - x*(k+1)/W(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Nov 10 2014

%F a(0) = 1; a(n) = Sum_{k=1..n-1} binomial(n,k) * a(k-1). - _Ilya Gutkovskiy_, Mar 04 2021

%e G.f. = 1 + 2*x^2 + 3*x^3 + 12*x^4 + 40*x^5 + 163*x^6 + 714*x^7 + ...

%t f[n_] := Sum[ StirlingS2[n, k], {k, 1, n}]; Table[(-1)^n + Sum[(-1)^(n - k)*f[k], {k, 0, n}], {n, 0, 23}] (* _Robert G. Wilson v_ *)

%t Needs["DiscreteMath`Combinatorica`"]; Table[ Sum[(-1)^(n - k)*BellB[k], {k, 0, n}], {n, 0, 23}] (* _Robert G. Wilson v_ *)

%o (Maxima) makelist(sum((-1)^(n-k)*belln(k),k,0,n),n,0,40); /* _Emanuele Munarini_, Sep 27 2012 */

%o (Sage)

%o def A087650_list(len): # After the formula of David Callan.

%o if len == 1: return [1]

%o if len == 2: return [1,0]

%o R = []; A = [1]; p = -1

%o for i in (0..len-1):

%o A.append(A[0] - A[i])

%o A[i] = A[0]

%o for k in range(i, 0, -1):

%o A[k-1] += A[k]

%o p = -p

%o R.append(A[i+1] + p)

%o return R

%o A087650_list(24) # _Peter Luschny_, Aug 28 2014

%o (PARI) vector(30, n, n--; sum(k=0, n, (-1)^(n-k)*polcoeff(sum(i=0, k, prod( j=1, i, x / (1 - j*x)), x^k * O(x)), k))) \\ _Altug Alkan_, Oct 30 2015

%Y Cf. A000110, A000296, A005001, A005493, A173109.

%K nonn,changed

%O 0,3

%A _Vladeta Jovovic_, Sep 23 2003