login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151368
Number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, 0)}.
1
1, 0, 2, 3, 12, 40, 145, 560, 2240, 9156, 38724, 166320, 728508, 3239808, 14595438, 66543477, 306511920, 1424916064, 6679435048, 31544500416, 149986398848, 717562911000, 3452381033556, 16696661334496, 81136327037620, 396022179418240, 1940898351416600, 9548613568549380, 47143311987432240
OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
FORMULA
G.f.: Int(Int(2*hypergeom([3/4, 5/4],[2],64*x^3*(2*x+1)/(8*x^2-1)^2)/(1-8*x^2)^(3/2),x),x)/x^2. - Mark van Hoeij, Aug 17 2014
1024*(n+4)*(n+3)*(n+2)*(n+1)*a(n)+512*(5*n+23)*(n+4)*(n+3)*(n+2)*a(n+1)+32*(n+4)*(n+3)*(84*n^2+868*n+2243)*a(n+2)+32*(n+5)*(n+4)*(46*n^2+554*n+1671)*a(n+3)+4*(n+6)*(n+5)*(100*n^2+1372*n+4737)*a(n+4)+24*(n+6)*(n+7)*(n^2+17*n+75)*a(n+5)-2*(7*n+65)*(n+8)*(n+7)*(n+6)*a(n+6)-3*(n+10)*(n+9)*(n+8)*(n+7)*a(n+7)=0. - Robert Israel, Sep 03 2018
MAPLE
f:= gfun:-rectoproc({1024*(n+4)*(n+3)*(n+2)*(n+1)*a(n)+512*(5*n+23)*(n+4)*(n+3)*(n+2)*a(n+1)+32*(n+4)*(n+3)*(84*n^2+868*n+2243)*a(n+2)+32*(n+5)*(n+4)*(46*n^2+554*n+1671)*a(n+3)+4*(n+6)*(n+5)*(100*n^2+1372*n+4737)*a(n+4)+24*(n+6)*(n+7)*(n^2+17*n+75)*a(n+5)-2*(7*n+65)*(n+8)*(n+7)*(n+6)*a(n+6)-3*(n+10)*(n+9)*(n+8)*(n+7)*a(n+7),
a(0)=1, a(1)=0, a(2)=2, a(3)=3, a(4)=12, a(5)=40, a(6)=145}, a(n), remember):
map(f, [$0..100]); # Robert Israel, Sep 03 2018
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, n], {n, 0, 25}]
CROSSREFS
Sequence in context: A012510 A012310 A082526 * A087650 A177699 A256881
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved