OFFSET
0,3
LINKS
Robert Israel, Table of n, a(n) for n = 0..1366
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
FORMULA
G.f.: Int(Int(2*hypergeom([3/4, 5/4],[2],64*x^3*(2*x+1)/(8*x^2-1)^2)/(1-8*x^2)^(3/2),x),x)/x^2. - Mark van Hoeij, Aug 17 2014
1024*(n+4)*(n+3)*(n+2)*(n+1)*a(n)+512*(5*n+23)*(n+4)*(n+3)*(n+2)*a(n+1)+32*(n+4)*(n+3)*(84*n^2+868*n+2243)*a(n+2)+32*(n+5)*(n+4)*(46*n^2+554*n+1671)*a(n+3)+4*(n+6)*(n+5)*(100*n^2+1372*n+4737)*a(n+4)+24*(n+6)*(n+7)*(n^2+17*n+75)*a(n+5)-2*(7*n+65)*(n+8)*(n+7)*(n+6)*a(n+6)-3*(n+10)*(n+9)*(n+8)*(n+7)*a(n+7)=0. - Robert Israel, Sep 03 2018
MAPLE
f:= gfun:-rectoproc({1024*(n+4)*(n+3)*(n+2)*(n+1)*a(n)+512*(5*n+23)*(n+4)*(n+3)*(n+2)*a(n+1)+32*(n+4)*(n+3)*(84*n^2+868*n+2243)*a(n+2)+32*(n+5)*(n+4)*(46*n^2+554*n+1671)*a(n+3)+4*(n+6)*(n+5)*(100*n^2+1372*n+4737)*a(n+4)+24*(n+6)*(n+7)*(n^2+17*n+75)*a(n+5)-2*(7*n+65)*(n+8)*(n+7)*(n+6)*a(n+6)-3*(n+10)*(n+9)*(n+8)*(n+7)*a(n+7),
a(0)=1, a(1)=0, a(2)=2, a(3)=3, a(4)=12, a(5)=40, a(6)=145}, a(n), remember):
map(f, [$0..100]); # Robert Israel, Sep 03 2018
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, n], {n, 0, 25}]
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved