login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151366
Number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of n steps taken from {(-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0)}.
1
1, 0, 2, 2, 12, 30, 130, 462, 1946, 7980, 34776, 153120, 694056, 3194334, 14971242, 71133062, 342500730, 1667918824, 8208038124, 40772105244, 204270936480, 1031413134960, 5245260798960, 26850869456400, 138289429433200, 716247599547360, 3729128330979200, 19510354349803200, 102540704879774160
OFFSET
0,3
LINKS
Alin Bostan, Jordan Tirrell, Bruce W. Westbury and Yi Zhang, On sequences associated to the invariant theory of rank two simple Lie algebras, arXiv:1911.10288 [math.CO], 2019.
Alin Bostan, Jordan Tirrell, Bruce W. Westbury and Yi Zhang, On some combinatorial sequences associated to invariant theory, arXiv:2110.13753 [math.CO], 2021.
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
FORMULA
G.f.: ((2*x+1)*(hypergeom([-2/3, -1/3],[1],27*x^2*(2*x+1))+4*x*hypergeom([-1/3, 1/3],[2],27*x^2*(2*x+1)))/(3*x+1)-1-3*x-5*x^2)/(3*x^3). - Mark van Hoeij, Aug 17 2014
Conjecture: (n+4)*(n+3)*a(n) -n*(n-1)*a(n-1) -12*(2*n+1)*(n-1)*a(n-2) -36*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Jul 21 2017
G.f.: (-5*x^2-3*x-1)/(3*x^3)+(1+3*x)^3*hypergeom([1/4, 3/4],[2],64*x*(1+3*x)^3/(1+24*x+36*x^2)^2)/(3*x^3*(1+24*x+36*x^2)^(1/2)). - Mark van Hoeij, Jul 27 2021
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[aux[0, 0, n], {n, 0, 25}]
CROSSREFS
Sequence in context: A130306 A199127 A093044 * A184944 A033886 A185144
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved