login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093044
A Jacobsthal Fibonacci product: a(n) = (2^n + 2*(-1)^n)*Fibonacci(n-1)/3.
0
1, 0, 2, 2, 12, 30, 110, 336, 1118, 3570, 11628, 37510, 121574, 393120, 1272646, 4117594, 13326060, 43122030, 139549054, 451585008, 1461368206, 4729073250, 15303624492, 49523533622, 160261578742, 518617270080, 1678280890550
OFFSET
0,3
COMMENTS
Form a graph from a triangle and its midpoint triangle. This sequence counts closed walks of length n at a vertex of the original triangle.
FORMULA
G.f.: (1-x-5*x^2-2*x^3)/((1+x-x^2)*(1-2*x-4*x^2));
a(n) = A078008(n)*A000045(n-1);
a(n) = (2^n/3+2*(-1)^n/3)*(((1+sqrt(5))/2)^(n-1)/sqrt(5)-((1-sqrt(5))/2)^(n-1)/sqrt(5)).
a(n) = a(n-1)+7*a(n-2)+2*a(n-3)-4*a(n-4). - Wesley Ivan Hurt, Apr 23 2021
MATHEMATICA
LinearRecurrence[{1, 7, 2, -4}, {1, 0, 2, 2}, 30] (* Harvey P. Dale, Sep 01 2023 *)
PROG
(Magma) [(2^n + 2*(-1)^n)*Fibonacci(n-1)/3 : n in [0..30]]; // Wesley Ivan Hurt, Apr 23 2021
CROSSREFS
Sequence in context: A324919 A130306 A199127 * A151366 A184944 A033886
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 22 2004
STATUS
approved