login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151370
Number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 1)}.
0
1, 0, 2, 3, 20, 60, 345, 1400, 7770, 36876, 204876, 1062600, 5984352, 32772168, 187727826, 1065491427, 6206538910, 36123454224, 213645926208, 1266954939822, 7593846587496, 45694598654640, 277066122022872, 1686973019649060, 10331412410444280, 63524084460496480, 392411097399517800
OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
FORMULA
G.f.: Int(Int(2*hypergeom([3/4, 5/4],[2],64*(x^2+x+1)*x^2/(12*x^2+1)^2)/(12*x^2+1)^(3/2),x),x)/x^2. - Mark van Hoeij, Aug 17 2014
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, n], {n, 0, 25}]
CROSSREFS
Sequence in context: A233410 A318765 A055814 * A041567 A338084 A087301
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved