login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318765
a(n) = (n + 2)*(n^2 + n - 1).
1
-2, 3, 20, 55, 114, 203, 328, 495, 710, 979, 1308, 1703, 2170, 2715, 3344, 4063, 4878, 5795, 6820, 7959, 9218, 10603, 12120, 13775, 15574, 17523, 19628, 21895, 24330, 26939, 29728, 32703, 35870, 39235, 42804, 46583, 50578, 54795, 59240, 63919, 68838, 74003, 79420, 85095
OFFSET
0,1
COMMENTS
First differences are in A004538.
a(n) is divisible by 11 for n = 3, 7, 9, 14, 18, 20, 25, 29, 31, 36, 40, ... with formula (1/3)*(11*m + (1 + (m mod 3))*(-1)^((m-1) mod 3) + 8), m >= 0.
FORMULA
O.g.f.: (-2 + 11*x - 4*x^2 + x^3)/(1 - x)^4.
E.g.f.: (-2 + 5*x + 6*x^2 + x^3)*exp(x).
a(n) = -A033445(-n-1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 5. - Wesley Ivan Hurt, Dec 18 2020
MAPLE
seq((n+2)*(n^2+n-1), n=0..43); # Paolo P. Lava, Sep 04 2018
MATHEMATICA
Table[(n + 2) (n^2 + n - 1), {n, 0, 50}]
PROG
(PARI) vector(50, n, n--; (n+2)*(n^2+n-1))
(Sage) [(n+2)*(n^2+n-1) for n in (0..50)]
(Maxima) makelist((n+2)*(n^2+n-1), n, 0, 50);
(GAP) List([0..50], n -> (n+2)*(n^2+n-1));
(Magma) [(n+2)*(n^2+n-1): n in [0..50]];
(Python) [(n+2)*(n**2+n-1) for n in range(50)]
(Julia) [(n+2)*(n^2+n-1) for n in 0:50] |> println
CROSSREFS
Cf. A004538.
Subsequence of A047216.
Similar sequences (see Table in Links section): A011379, A027444, A033445, A034262, A045991, A069778.
Sequence in context: A195686 A295365 A233410 * A055814 A151370 A041567
KEYWORD
sign,easy
AUTHOR
Bruno Berselli, Sep 04 2018
STATUS
approved