login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A318762
Number of permutations of a multiset whose multiplicities are the prime indices of n.
27
1, 1, 1, 2, 1, 3, 1, 6, 6, 4, 1, 12, 1, 5, 10, 24, 1, 30, 1, 20, 15, 6, 1, 60, 20, 7, 90, 30, 1, 60, 1, 120, 21, 8, 35, 180, 1, 9, 28, 120, 1, 105, 1, 42, 210, 10, 1, 360, 70, 140, 36, 56, 1, 630, 56, 210, 45, 11, 1, 420, 1, 12, 420, 720, 84, 168, 1, 72, 55
OFFSET
1,4
COMMENTS
This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
LINKS
FORMULA
If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) = (Sum x_i * y_i)! / Product (x_i!)^y_i.
a(n) = A008480(A181821(n)).
a(n) = A112624(n) * A124794(n). - Max Alekseyev, Oct 15 2023
Sum_{m in row n of A215366} a(m) = A005651(n).
Sum_{m in row n of A215366} a(m) * A008480(m) = A000670(n).
Sum_{m in row n of A215366} a(m) * A008480(m) / A001222(m)! = A000110(n).
EXAMPLE
The a(12) = 12 permutations are (1123), (1132), (1213), (1231), (1312), (1321), (2113), (2131), (2311), (3112), (3121), (3211).
MAPLE
a:= n-> (l-> add(i, i=l)!/mul(i!, i=l))(map(i->
numtheory[pi](i[1])$i[2], ifactors(n)[2])):
seq(a(n), n=1..100); # Alois P. Heinz, Sep 03 2018
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Total[primeMS[n]]!/Times@@Factorial/@primeMS[n], {n, 100}]
PROG
(PARI) sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
a(n)={if(n==1, 1, my(s=sig(n)); vecsum(s)!/prod(i=1, #s, s[i]!))} \\ Andrew Howroyd, Dec 17 2018
KEYWORD
nonn,look
AUTHOR
Gus Wiseman, Sep 03 2018
STATUS
approved