OFFSET
1,4
COMMENTS
This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000
FORMULA
If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) = (Sum x_i * y_i)! / Product (x_i!)^y_i.
EXAMPLE
The a(12) = 12 permutations are (1123), (1132), (1213), (1231), (1312), (1321), (2113), (2131), (2311), (3112), (3121), (3211).
MAPLE
a:= n-> (l-> add(i, i=l)!/mul(i!, i=l))(map(i->
numtheory[pi](i[1])$i[2], ifactors(n)[2])):
seq(a(n), n=1..100); # Alois P. Heinz, Sep 03 2018
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Total[primeMS[n]]!/Times@@Factorial/@primeMS[n], {n, 100}]
PROG
(PARI) sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
a(n)={if(n==1, 1, my(s=sig(n)); vecsum(s)!/prod(i=1, #s, s[i]!))} \\ Andrew Howroyd, Dec 17 2018
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Gus Wiseman, Sep 03 2018
STATUS
approved