|
|
A000258
|
|
Expansion of e.g.f. exp(exp(exp(x)-1)-1).
(Formerly M2932 N1178)
|
|
86
|
|
|
1, 1, 3, 12, 60, 358, 2471, 19302, 167894, 1606137, 16733779, 188378402, 2276423485, 29367807524, 402577243425, 5840190914957, 89345001017415, 1436904211547895, 24227076487779802, 427187837301557598, 7859930038606521508, 150601795280158255827
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Number of pairs of set partitions (d,d') of [n] such that d is finer than d'. - A. Joseph Kennedy (kennedy_2001in(AT)yahoo.co.in), Feb 05 2006
In the Comm. Algebra paper cited, I introduce a sequence of algebras called 'class partition algebras' with this sequence as dimensions. The algebras are the centralizers of wreath product in combinatorial representation theory. - A. Joseph Kennedy (kennedy_2001in(AT)yahoo.co.in), Feb 17 2008
a(n) is the number of ways to partition {1,2,...,n} and then partition each cell (block) into subcells.
|
|
REFERENCES
|
J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.4.
|
|
LINKS
|
P. J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
|
|
FORMULA
|
a(n) = |A039811(n, 1)| (first column of triangle).
a(n) = Sum_{k=0..n} Stirling2(n, k)*Bell(k). - Detlef Pauly (dettodet(AT)yahoo.de), Jun 06 2002
Representation as an infinite series (Dobinski-type formula), in Maple notation: a(n)=exp(exp(-1)-1)*sum(evalf(sum(p!*stirling2(k, p)*exp(-p), p=1..k))*k^n/k!, k=0..infinity), n=1, 2, ... . - Karol A. Penson, Nov 28 2003
G.f.: Sum_{j>=0} Bell(j)*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 06 2019
|
|
EXAMPLE
|
G.f. = 1 + x + 3*x^2 + 12*x^3 + 60*x^4 + 358*x^5 + 2471*x^6 + 19302*x^7 + ...
|
|
MAPLE
|
with(combinat, bell, stirling2): seq(add(stirling2(n, k)*(bell(k)), k=0..n), n=0..30);
with(combstruct); SetSetSetL := [T, {T=Set(S), S=Set(U, card >= 1), U=Set(Z, card >=1)}, labeled];
# alternative Maple program:
b:= proc(n, t) option remember; `if`(n=0 or t=0, 1, add(
b(n-j, t)*b(j, t-1)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 2):
|
|
MATHEMATICA
|
nn = 20; Range[0, nn]! CoefficientList[Series[Exp[Exp[Exp[x] - 1] - 1], {x, 0, nn}], x]
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ Exp[ Exp[x] - 1] - 1] , {x, 0, n}]]; (* Michael Somos, Aug 15 2015 *)
a[n_] := Sum[StirlingS2[n, k]*BellB[k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 06 2016 *)
Table[Sum[BellY[n, k, BellB[Range[n]]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
|
|
PROG
|
(Maxima) makelist(sum(stirling2(n, k)*belln(k), k, 0, n), n, 0, 24); /* Emanuele Munarini, Jul 04 2011 */
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(Exp(x)-1)-1))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Feb 01 2020
|
|
CROSSREFS
|
Row sums of (Stirling2)^2 triangle A130191.
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|