login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370652
Number of permutations of [n] having exactly two adjacent 4-cycles.
1
0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 12, 60, 357, 2508, 20100, 181080, 1811886, 19938270, 239319540, 3111697260, 43569197270, 653597773860, 10458282340380, 177800134878240, 3200533135400175, 60812090365924905, 1216273182165519240, 25542270225880538760
OFFSET
0,10
LINKS
R. A. Brualdi and Emeric Deutsch, Adjacent q-cycles in permutations, arXiv:1005.0781 [math.CO], 2010.
FORMULA
G.f.: (1/2) * Sum_{k>=2} k! * x^(k+6) / (1+x^4)^(k+1).
a(n) = (1/2) * Sum_{k=0..floor(n/4)-2} (-1)^k * (n-3*k-6)! / k!.
PROG
(PARI) my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0, 0, 0], Vec(sum(k=2, N, k!*x^(k+6)/(1+x^4)^(k+1))/2))
(PARI) a(n, k=2, q=4) = sum(j=0, n\q-k, (-1)^j*(n-(q-1)*(j+k))!/j!)/k!;
CROSSREFS
Column k=2 of A177252.
Sequence in context: A096471 A140097 A105227 * A000258 A326242 A070863
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 24 2024
STATUS
approved