OFFSET
0,10
LINKS
R. A. Brualdi and Emeric Deutsch, Adjacent q-cycles in permutations, arXiv:1005.0781 [math.CO], 2010.
FORMULA
G.f.: (1/2) * Sum_{k>=2} k! * x^(k+6) / (1+x^4)^(k+1).
a(n) = (1/2) * Sum_{k=0..floor(n/4)-2} (-1)^k * (n-3*k-6)! / k!.
PROG
(PARI) my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0, 0, 0], Vec(sum(k=2, N, k!*x^(k+6)/(1+x^4)^(k+1))/2))
(PARI) a(n, k=2, q=4) = sum(j=0, n\q-k, (-1)^j*(n-(q-1)*(j+k))!/j!)/k!;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 24 2024
STATUS
approved