login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [n] having exactly two adjacent 4-cycles.
1

%I #15 Feb 24 2024 10:49:54

%S 0,0,0,0,0,0,0,0,1,3,12,60,357,2508,20100,181080,1811886,19938270,

%T 239319540,3111697260,43569197270,653597773860,10458282340380,

%U 177800134878240,3200533135400175,60812090365924905,1216273182165519240,25542270225880538760

%N Number of permutations of [n] having exactly two adjacent 4-cycles.

%H R. A. Brualdi and Emeric Deutsch, <a href="http://arxiv.org/abs/1005.0781">Adjacent q-cycles in permutations</a>, arXiv:1005.0781 [math.CO], 2010.

%F G.f.: (1/2) * Sum_{k>=2} k! * x^(k+6) / (1+x^4)^(k+1).

%F a(n) = (1/2) * Sum_{k=0..floor(n/4)-2} (-1)^k * (n-3*k-6)! / k!.

%o (PARI) my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0, 0, 0], Vec(sum(k=2, N, k!*x^(k+6)/(1+x^4)^(k+1))/2))

%o (PARI) a(n, k=2, q=4) = sum(j=0, n\q-k, (-1)^j*(n-(q-1)*(j+k))!/j!)/k!;

%Y Column k=2 of A177252.

%Y Cf. A370426, A370528.

%K nonn

%O 0,10

%A _Seiichi Manyama_, Feb 24 2024