login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177252
Triangle read by rows: T(n,k) is the number of permutations of [n] having k adjacent 4-cycles (0 <= k <= floor(n/4)), i.e., having k cycles of the form (i, i+1, i+2, i+3).
10
1, 1, 2, 6, 23, 1, 118, 2, 714, 6, 5016, 24, 40201, 118, 1, 362163, 714, 3, 3623772, 5016, 12, 39876540, 40200, 60, 478639079, 362163, 357, 1, 6223394516, 3623772, 2508, 4, 87138394540, 39876540, 20100, 20, 1307195547720, 478639080, 181080, 120
OFFSET
0,3
COMMENTS
Row n contains 1 + floor(n/4) entries.
Sum of entries in row n = n! (A000142).
LINKS
R. A. Brualdi and E. Deutsch, Adjacent q-cycles in permutations, arXiv:1005.0781 [math.CO], 2010.
FORMULA
T(n,k) = Sum_{j=0..floor(n/4)} (-1)^(k+j)*binomial(j,k)*(n-3*j)!/j!.
T(n,0) = A177253(n).
Sum_{k>=0} k*T(n,k) = (n-3)! (n >= 4).
G.f. of column k: (1/k!) * Sum_{j>=k} j! * x^(j+3*k) / (1+x^4)^(j+1). - Seiichi Manyama, Feb 24 2024
EXAMPLE
T(9,2)=3 because we have (1234)(5678)(9), (1234)(5)(6789), and (1)(2345)(6789).
Triangle starts:
1;
1;
2;
6;
23, 1;
118, 2;
714, 6;
5016, 24;
MAPLE
T := proc (n, k) options operator, arrow: sum((-1)^(k+j)*binomial(j, k)*factorial(n-3*j)/factorial(j), j = 0 .. floor((1/4)*n)) end proc: for n from 0 to 15 do seq(T(n, k), k = 0 .. floor((1/4)*n)) end do; % yields sequence in triangular form
MATHEMATICA
T[n_, k_]:= T[n, k]= Sum[(-1)^(k+j)*Binomial[j, k]*(n-3 j)!/j!, {j, 0, n/4}];
Table[T[n, k], {n, 0, 15}, {k, 0, n/4}] // Flatten (* Jean-François Alcover, Nov 17 2017 *)
PROG
(Magma)
A177252:= func< n, k | (&+[(-1)^j*Factorial(n-3*k-3*j)/(Factorial(k) *Factorial(j)): j in [0..Floor((n-4*k)/4)]]) >;
[A177252(n, k): k in [0..Floor(n/4)], n in [0..20]]; // G. C. Greubel, Apr 28 2024
(SageMath)
def A177252(n, k): return sum((-1)^j*factorial(n-3*k-3*j)/(factorial(k) *factorial(j)) for j in range(1+(n-4*k)//4))
flatten([[A177252(n, k) for k in range(1+n//4)] for n in range(21)]) # G. C. Greubel, Apr 28 2024
CROSSREFS
Columns k=0-3 give A177253, A369098, A370652, A370653.
Cf. A000142 (row sums).
Sequence in context: A264319 A264173 A220183 * A168270 A222761 A298817
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 07 2010
STATUS
approved