Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Apr 29 2024 09:30:26
%S 1,1,2,6,23,1,118,2,714,6,5016,24,40201,118,1,362163,714,3,3623772,
%T 5016,12,39876540,40200,60,478639079,362163,357,1,6223394516,3623772,
%U 2508,4,87138394540,39876540,20100,20,1307195547720,478639080,181080,120
%N Triangle read by rows: T(n,k) is the number of permutations of [n] having k adjacent 4-cycles (0 <= k <= floor(n/4)), i.e., having k cycles of the form (i, i+1, i+2, i+3).
%C Row n contains 1 + floor(n/4) entries.
%C Sum of entries in row n = n! (A000142).
%H Seiichi Manyama, <a href="/A177252/b177252.txt">Rows n = 0..200, flattened</a>
%H R. A. Brualdi and E. Deutsch, <a href="http://arxiv.org/abs/1005.0781">Adjacent q-cycles in permutations</a>, arXiv:1005.0781 [math.CO], 2010.
%F T(n,k) = Sum_{j=0..floor(n/4)} (-1)^(k+j)*binomial(j,k)*(n-3*j)!/j!.
%F T(n,0) = A177253(n).
%F Sum_{k>=0} k*T(n,k) = (n-3)! (n >= 4).
%F G.f. of column k: (1/k!) * Sum_{j>=k} j! * x^(j+3*k) / (1+x^4)^(j+1). - _Seiichi Manyama_, Feb 24 2024
%e T(9,2)=3 because we have (1234)(5678)(9), (1234)(5)(6789), and (1)(2345)(6789).
%e Triangle starts:
%e 1;
%e 1;
%e 2;
%e 6;
%e 23, 1;
%e 118, 2;
%e 714, 6;
%e 5016, 24;
%p T := proc (n, k) options operator, arrow: sum((-1)^(k+j)*binomial(j, k)*factorial(n-3*j)/factorial(j), j = 0 .. floor((1/4)*n)) end proc: for n from 0 to 15 do seq(T(n, k), k = 0 .. floor((1/4)*n)) end do; % yields sequence in triangular form
%t T[n_, k_]:= T[n, k]= Sum[(-1)^(k+j)*Binomial[j,k]*(n-3 j)!/j!, {j,0,n/4}];
%t Table[T[n, k], {n, 0, 15}, {k, 0, n/4}] // Flatten (* _Jean-François Alcover_, Nov 17 2017 *)
%o (Magma)
%o A177252:= func< n,k | (&+[(-1)^j*Factorial(n-3*k-3*j)/(Factorial(k) *Factorial(j)): j in [0..Floor((n-4*k)/4)]]) >;
%o [A177252(n,k): k in [0..Floor(n/4)], n in [0..20]]; // _G. C. Greubel_, Apr 28 2024
%o (SageMath)
%o def A177252(n,k): return sum((-1)^j*factorial(n-3*k-3*j)/(factorial(k) *factorial(j)) for j in range(1+(n-4*k)//4))
%o flatten([[A177252(n,k) for k in range(1+n//4)] for n in range(21)]) # _G. C. Greubel_, Apr 28 2024
%Y Columns k=0-3 give A177253, A369098, A370652, A370653.
%Y Cf. A000166, A008290, A177248, A177249, A177250, A177251.
%Y Cf. A000142 (row sums).
%K nonn,tabf
%O 0,3
%A _Emeric Deutsch_, May 07 2010