login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177248
Triangle read by rows: T(n,k) is the number of permutations of [n] having k adjacent transpositions (0 <= k <= floor(n/2)). An adjacent transposition is a cycle of the form (i, i+1).
10
1, 1, 1, 1, 4, 2, 19, 4, 1, 99, 18, 3, 611, 99, 9, 1, 4376, 612, 48, 4, 35621, 4376, 306, 16, 1, 324965, 35620, 2190, 100, 5, 3285269, 324965, 17810, 730, 25, 1, 36462924, 3285270, 162480, 5940, 180, 6, 440840359, 36462924, 1642635, 54160, 1485, 36, 1
OFFSET
0,5
COMMENTS
Row n contains 1 + floor(n/2) entries.
Sum of entries in row n = n! (A000142).
LINKS
R. A. Brualdi and E. Deutsch, Adjacent q-cycles in permutations, arXiv:1005.0781 [math.CO], 2010.
FORMULA
T(n, k) = Sum_{j=0..floor(n/2)} (-1)^(k+j)*binomial(j,k)*(n-j)!/j!.
T(n, 0) = A177249(n).
Sum_{k=0..floor(n/2)} k*T(n,k) = (n-1)! (n >= 2).
G.f. of column k: (1/k!) * Sum_{j>=k} j! * x^(j+k) / (1+x^2)^(j+1). - Seiichi Manyama, Feb 24 2024
EXAMPLE
T(5,2)=3 because we have (12)(34)(5), (12)(3)(45), and (1)(23)(45).
Triangle starts:
1;
1;
1, 1;
4, 2;
19, 4, 1;
99, 18, 3;
611, 99, 9, 1;
MAPLE
T := proc (n, k) options operator, arrow: sum((-1)^(k+j)*binomial(j, k)*factorial(n-j)/factorial(j), j = 0 .. floor((1/2)*n)) end proc: for n from 0 to 12 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := Sum[(-1)^(k + j)*Binomial[j, k]*(n - j)!/j!, {j, 0, n/2}];
Table[T[n, k], {n, 0, 12}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Nov 20 2017 *)
PROG
(PARI) T(n, k) = sum(j=0, n\2, (-1)^(k+j)*binomial(j, k)*(n-j)!/j!);
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Nov 21 2017
(Magma)
F:=Factorial;
A177248:= func< n, k | (&+[(-1)^j*F(n-k-j)/(F(k)*F(j)): j in [0..Floor((n-2*k)/2)]]) >;
[A177248(n, k): k in [0..Floor(n/2)], n in [0..16]]; // G. C. Greubel, Apr 28 2024
(SageMath)
f=factorial;
def A177248(n, k): return sum((-1)^j*f(n-k-j)/(f(k)*f(j)) for j in range(1+(n-2*k)//2))
flatten([[A177248(n, k) for k in range(1+n//2)] for n in range(17)]) # G. C. Greubel, Apr 28 2024
CROSSREFS
Columns k=0..3 give A177249, A370524, A370426, A370529.
Cf. A000142 (row sums).
Sequence in context: A117692 A052966 A305135 * A191706 A081797 A354094
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 07 2010
STATUS
approved