|
|
A177248
|
|
Triangle read by rows: T(n,k) is the number of permutations of [n] having k adjacent transpositions (0 <= k <= floor(n/2)). An adjacent transposition is a cycle of the form (i, i+1).
|
|
5
|
|
|
1, 1, 1, 1, 4, 2, 19, 4, 1, 99, 18, 3, 611, 99, 9, 1, 4376, 612, 48, 4, 35621, 4376, 306, 16, 1, 324965, 35620, 2190, 100, 5, 3285269, 324965, 17810, 730, 25, 1, 36462924, 3285270, 162480, 5940, 180, 6, 440840359, 36462924, 1642635, 54160, 1485, 36, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Row n contains 1 + floor(n/2) entries.
Sum of entries in row n = n! (A000142).
Sum_{k>=0} k*a(n,k) = (n-1)! (n >= 2).
|
|
LINKS
|
|
|
FORMULA
|
T(n,k) = Sum_{j=0..floor(n/2)} (-1)^(k+j)*binomial(j,k)*(n-j)!/j!.
|
|
EXAMPLE
|
T(5,2)=3 because we have (12)(34)(5), (12)(3)(45), and (1)(23)(45).
Triangle starts:
1;
1;
1, 1;
4, 2;
19, 4, 1;
99, 18, 3;
611, 99, 9, 1;
|
|
MAPLE
|
T := proc (n, k) options operator, arrow: sum((-1)^(k+j)*binomial(j, k)*factorial(n-j)/factorial(j), j = 0 .. floor((1/2)*n)) end proc: for n from 0 to 12 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
|
|
MATHEMATICA
|
T[n_, k_] := Sum[(-1)^(k + j)*Binomial[j, k]*(n - j)!/j!, {j, 0, n/2}];
|
|
PROG
|
(PARI) T(n, k) = sum(j=0, n\2, (-1)^(k+j)*binomial(j, k)*(n-j)!/j!);
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Nov 21 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|