login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177255
a(n) = Sum_{j=1..n} j*B(j-1), where B(k) = A000110(k) are the Bell numbers.
4
0, 1, 3, 9, 29, 104, 416, 1837, 8853, 46113, 257583, 1533308, 9676148, 64452909, 451475027, 3314964857, 25442301577, 203604718076, 1695172374548, 14654631691569, 131309475792709, 1217516798735521, 11664652754184043, 115319114738472472, 1174967255260496776
OFFSET
0,3
COMMENTS
Number of adjacent blocks in all partitions of the set {1,2,...,n}. An adjacent block is a block of the form (i, i+1, i+2, ...). Example: a(3)=9 because in 1-2-3, 1-23, 12-3, 13-2, and 123 we have 3, 2, 2, 1, and 1 adjacent blocks, respectively.
LINKS
FORMULA
a(n) = Sum_{k=0..n} k * A177254(n,k).
MAPLE
with(combinat): a := proc (n) options operator, arrow: sum(j*bell(j-1), j = 1 .. n) end proc; seq(a(n), n = 0 .. 23);
MATHEMATICA
With[{nn=30}, Join[{0}, Accumulate[BellB[Range[0, nn-1]]Range[nn]]]] (* Harvey P. Dale, Nov 10 2014 *)
PROG
(Magma)
[n eq 0 select 0 else (&+[j*Bell(j-1): j in [1..n]]): n in [0..30]]; // G. C. Greubel, May 11 2024
(SageMath)
[sum(j*bell_number(j-1) for j in range(1, 1+n)) for n in range(31)] # G. C. Greubel, May 11 2024
CROSSREFS
Partial sums of A052889.
Sequence in context: A060719 A091152 A148945 * A136628 A151031 A151032
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 07 2010
STATUS
approved