login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060719
a(0) = 1; a(n+1) = a(n) + Sum_{i=0..n} binomial(n,i)*(a(i)+1).
6
1, 3, 9, 29, 103, 405, 1753, 8279, 42293, 231949, 1357139, 8427193, 55288873, 381798643, 2765917089, 20960284293, 165729739607, 1364153612317, 11665484410113, 103448316470743, 949739632313501, 9013431476894645, 88304011710168691
OFFSET
0,2
LINKS
A. R. Ashrafi, L. Ghanbari Maman, K. Kavousi, F. Koorepazan Moftakhar, An Algorithm for Constructing All Supercharacter Theories of a Finite Group, arXiv:1911.12232 [math.GR], 2019.
FORMULA
a(n) = 2*Bell(n+1) - 1. - Vladeta Jovovic, Feb 11 2003
Equals the binomial transform of A186021. Also, a(n) = A186021(n+1) - 1. - Gary W. Adamson May 20 2013
EXAMPLE
a(3) = 29 = (30 - 1) = A186021(4) - 1
MAPLE
A060719 := proc(n) option remember; local i; if n=0 then 1 else A060719(n-1)+add(binomial(n-1, i)*(A060719(i)+1), i=0..n-1); fi; end;
MATHEMATICA
Array[2 BellB[# + 1] - 1 &, 23, 0] (* Michael De Vlieger, Feb 12 2020 *)
PROG
(PARI) vector(26, n, my(m=n-1); 2*sum(k=0, m+1, stirling(m+1, k, 2)) -1 ) \\ G. C. Greubel, Feb 12 2020
(Magma) [2*Bell(n+1) -1: n in [0..25]]; // G. C. Greubel, Feb 12 2020
(Sage) [2*bell_number(n+1)-1 for n in (0..25)] # G. C. Greubel, Feb 12 2020
CROSSREFS
Cf. A000110.
Cf. A186021.
Sequence in context: A148943 A148944 A293070 * A091152 A148945 A177255
KEYWORD
easy,nonn
AUTHOR
Frank Ellermann, Apr 23 2001
STATUS
approved